| 研究生: |
王蓮淨 Lian-Jing Wang |
|---|---|
| 論文名稱: |
以主題事件追蹤為基礎之摘要擷取 |
| 指導教授: |
林熙禎
Shi-Jen Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 查詢式摘要 、擷取式摘要 、K-Medoids 、遺忘因子 、多文件摘要 、主題事件追蹤 |
| 外文關鍵詞: | Query-oriented Summarization, Extractive Summarization, K-Medoids, damping factor, Multi-document Summarization, tracing topic event |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年由於網路發展迅速,使用者只要透過網路即可以取得所需資訊,但過多的資訊造成資訊過載之問題,因此如何在眾多資訊中擷取出重要的資訊供使用者閱讀已成為當今重要議題。然而傳統的摘要模式通常為靜態摘要,並無法針對特定主題做每日摘要的動態更新,因此本研究加入了遺忘因子,每日可更新摘要內容。並採用以主題關鍵字為基礎的方式,產出特定主題摘要內容,本研究將使用查詢式摘要(Query-oriented Summarization)法來進行多文件摘要之擷取。
本研究將採用圖形網路分群架構分析文句之間潛在語意關聯性,分群方式為K-Medoids分群,探討圖形網路中所有文句節點之間的相似度,並將之做分群,得出文句間潛在語意,以提升摘要品質。
實驗採用DUC 2002資料集,並以ROUGE衡量摘要品質,和自行蒐集之CNN新聞文章,其主題分別為尼泊爾大地震、伊斯蘭國及MERS,並觀察摘要結果是否能達到主題事件追蹤的功效;經實驗證明,本研究採用K-Medoids分群架構之多文件摘要方法在DUC 2002之50字、100字和200字多文件摘要,ROUGE-1值分別可達到0.2948、0.3435與0.4375,此結果在50字與100字摘要品質幾乎優於全數當年研討會之參賽者之摘要品質,另外200字摘要結果也與當年參賽者勢均力敵;而在主題事件追蹤之摘要實驗,也證實本系統可以達到主題事件追蹤摘要的功效。
關鍵字:查詢式摘要、擷取式摘要、K-Medoids、遺忘因子、多文件摘要、主題事件追蹤。
In recent year, the developing technology of Network is getting soon. User can get information through the Internet, but it generates a problem that is information overload. Therefore, how to get some important information to user is really important now. However, the traditional technology of summarization is static, and it can't trace the specific topic and update the summary everyday. That is why there is a damping factor in this research, and it can update the summary everyday. Also, in this research, using a way which based on topic term, and created the summary of the specific topic. In this research, using the Query-oriented Summarization way is to get Multi-document Summarization.
Using the clustering architecture of graph network is to analyze the hiding semantic relation between sentences in this research. The clustering way is K-Medoids Clustering. Discussing the similarly between all sentences in graph network, and clustering these sentences are to get hiding semantic relation between sentences to rise the quality of summary.
In experiment, using DUC 2002 data set and analyzing quality of summary by ROUGE, and the other data set is CNN news which topics are Nepal earthquake, Islamic State, and MERS. Observing the result of summaries is achieving the efficacy which is tracing topic event or not. The result show that using K-Medoids clustering architecture is to create Multi-document Summarizations which are 50, 100 and 200 words by DUC 2002 data set. The results of ROUGE-1 are 0.2948, 0.3435 and 0.4375. Also, the quality of summaries which are 50 and 100 words are higher than participants in DUC 2002. In addition, the result of summary of 200 words is good as participants in DUC 2002. Furthermore, in experiment of summary of tracing topic event, also proving the system in this research can achieve the efficacy which is tracing topic event.
Keywords: Query-oriented Summarization, Extractive Summarization, K-Medoids, damping factor, Multi-document Summarization and tracing topic event
中文部分
[1] 黃嘉偉, 「以文句網路分群架構萃取多文件摘要」. 國立中央大學,碩士論文,民國103年.
[2] 吳登翔, 「使用者模型為基礎的概念念飄移預測」. 國立中央大學,碩士論文,民國103年.
[3] 李浩平, 「運用NGD建立適用於使用者回饋資訊不足之文件過濾系統」. 國立中央大學,碩士論文,民國 100 年.
[4] 楊佩臻, 「利用文句關係網路自動萃取文件摘要之研究」. 國立中央大學, 碩士論文,民國 102 年。.
英文部分
[5] L. Kaufman and P. J. Rousseeuw, “Clustering by means of medoids,” Stat. Data Anal. Based L 1-Norm Relat. Methods. First Int. Conf., pp. 405–416416, 1987.
[6] “Google 快訊.” [Online]. Available: https://www.google.com/alerts.
[7] C. Aggarwal and C. Zhai, Mining text data, vol. 4, no. 2(63). Springer New York Dordrecht Heidelberg London, 2012.
[8] I. MANI, G. KLEIN, D. HOUSE, L. HIRSCHMAN, T. FIRMIN, and B. SUNDHEIM, “SUMMAC: a text summarization evaluation,” Natural Language Engineering, vol. 8, no. 01. 2002.
[9] A. Tombros and M. Sanderson, “Advantages of query biased summaries in information retrieval,” Proc. 1998 21st Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 2–10, 1998.
[10] L. L. Bando, F. Scholer, and A. Turpin, “Constructing Query-biased Summaries : a Comparison of Human and System Generated Snippets,” Proc. third Symp. Inf. Interact. Context, pp. 195–204, 2010.
[11] L. Antiqueira, O. Oliveirajr, L. Costa, and M. Nunes, “A complex network approach to text summarization,” Inf. Sci. (Ny)., vol. 179, no. 5, pp. 584–599, Feb. 2009.
[12] D. R. Radev, E. Hovy, and K. McKeown, “Introduction to the special issue on summarization,” Comput. Linguist., vol. 28, no. 4, pp. 399–408, 2002.
[13] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks.,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 12, pp. 7821–7826, 2002.
[14] E. Canhasi and I. Kononenko, “Weighted archetypal analysis of the multi-element graph for query-focused multi-document summarization,” Expert Syst. Appl., vol. 41, no. 2, pp. 535–543, 2014.
[15] Z. Zhang, S. S. Ge, and H. He, “Mutual-reinforcement document summarization using embedded graph based sentence clustering for storytelling,” Inf. Process. Manag., vol. 48, no. 4, pp. 767–778, Jul. 2012.
[16] X. Cai and W. Li, “A spectral analysis approach to document summarization: Clustering and ranking sentences simultaneously,” Inf. Sci. (Ny)., vol. 181, no. 18, pp. 3816–3827, Sep. 2011.
[17] G. Erkan and D. Radev, “LexRank: Graph-based lexical centrality as salience in text summarization,” J. Artif. Intell. Res.(JAIR), vol. 22, pp. 457–479, 2004.
[18] D. M. Dunlavy, D. P. O’Leary, J. M. Conroy, and J. D. Schlesinger, “QCS: A system for querying, clustering and summarizing documents,” Inf. Process. Manag., vol. 43, no. 6, pp. 1588–1605, 2007.
[19] G. Yang, D. Wen, Kinshuk, N.-S. Chen, and E. Sutinen, A novel contextual topic model for multi-document summarization, vol. 42, no. 3. Elsevier Ltd, 2015.
[20] M. Mendoza, S. Bonilla, and C. Noguera, “Extractive single-document summarization based on genetic operators and guided local search,” Expert Syst. with …, vol. 41, no. 9, pp. 4158–4169, Jul. 2014.
[21] C. Aggarwal and S. Philip, “A Framework for Clustering Massive Text and Categorical Data Streams.,” Sdm, pp. 479–483, 2006.
[22] K. Sugiyama, K. Hatano, and M. Yoshikawa, “Adaptive web search based on user profile constructed without any effort from users,” in WWW ’04: Proceedings of the 13th international conference on World Wide Web, 2004, pp. 675–684.
[23] R. L. Cilibrasi and P. M. B. Vitányi, “The Google similarity distance,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 3, pp. 370–383, 2007.
[24] P. I. Chen and S. J. Lin, “Word AdHoc Network: Using Google Core Distance to extract the most relevant information,” Knowledge-Based Syst., vol. 24, no. 3, pp. 393–405, 2011.
[25] J. Neto, A. Santos, and C. Kaestner, “Document clustering and text summarization,” Proc. 4th Int. Conf., 2000.
[26] D. Davis, M., Joann, D. K., and Marion, “Scientific Papers and Presentations: Navigating Scientific Communication in Today’s world. Academic Press.,” 2012.
[27] C. Lopez, V. Prince, and M. Roche, “How can catchy titles be generated without loss of informativeness?,” Expert Syst. Appl., vol. 41, no. 4 PART 1, pp. 1051–1062, 2014.
[28] G. Salton and M. J. McGill, “Introduction to modern information retrieval.,” Introd. to Mod. Inf. Retr., 1983.
[29] C. Biemann, Structure Discovery in Natural Language. Springer Heidelberg Dordrecht London New York.
[30] A. Huang, “Similarity measures for text document clustering,” Proc. Sixth New Zeal., no. April, pp. 49–56, 2008.
[31] K. Hagiwara, M., Ogawa, Y., and Toyama, “Effective Use of Indirect Dependency for Distributional Similarity,” Inf. Media Tehnol., no. 3(4), pp. 864–887, 2008.
[32] H. Shimizu, N., Hagiwara, M., Ogawa, Y., Toyama, K., and Nakagawa, “Metric Learning for Synonym Acquisition,” 2008, pp. pp. 793–800.
[33] S. Gu, Y. Tan, and X. He, “Recentness biased learning for time series forecasting,” in Information Sciences, 2013, vol. 237, pp. 29–38.
[34] L. Li, L. Zheng, F. Yang, and T. Li, “Modeling and broadening temporal user interest in personalized news recommendation,” Expert Syst. Appl., vol. 41, no. 7, pp. 3168–3177, 2014.
[35] R. Angheluta, R. De Busser, and M. Moens, “The Use of Topic Segmentation for Automatic Summarization,” in Proceedings of the ACL-2002 Workshop on Automatic Summarization, 2002.
[36] N. Labroche, “Online fuzzy medoid based clustering algorithms,” Neurocomputing, vol. 126, pp. 141–150, 2014.