跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴加晉
Chia-Chin Lai
論文名稱: 動態接觸角觀測及其模式探討
Observation of Dynamic Contact Angle and Its Model
指導教授: 李明旭 許少瑜
Ming-Hsu Li
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 60
中文關鍵詞: 動態接觸角
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 孔隙介質多相流在地表下的流體傳輸過程中扮演重要的角色,毛細壓力是影響孔隙介質多相流的重要驅動力之一。而接觸角是影響毛細壓力重要的物理量。相關研究顯示,流體流動過程中接觸角會隨著毛細數(capillary number)的不同產生變化。現今,尚未有方法可直接觀測地表下動態孔隙介質流體流動情形,將地下複雜孔隙幾何圖形簡化成微模型圖案並進行注流實驗,是目前觀測動態孔隙介質流的方法之一。本研究藉由高透光性的微模型觀察流體在管道內的變化。
    本研究選用PDMS(聚二甲基矽氧烷)片材當作製作微模型的材料。利用微影製程製作矽晶片當作母模,使用PDMS片材翻印母模,讓片材表面留下孔道可供流體流動。本研究用的微模型是 0.1 mm * 0.2 mm的方管孔隙介質幾何圖案。透過高速相機記錄微模型內流體的流動過程,及影像分析軟體量測影像中接觸角隨流速不同的變化。隨著注入流速增加,接觸角都有變大的趨勢。與以往研究結果不同的是隨著流速加大,本研究測得的動態接觸角相關參數α,β並非定值。並將實驗得到的動態接觸角及相關參數α,β修正過往以靜態接觸角為參數的PDM模式,比較修正後的模式結果。


    Porous media multi-phase flow plays an important role in the fluid transport process in the subsurface. One of the important driving forces of porous media multi-phase flow is capillary pressure,and the contact angle is one of the important parameter. Related researches show that when fluid flows, contact angle varies depending on different capillary numbers. Up to date, there is no method for direct observation of the flow of porous media fluid underground. The micromodel is one of the mainly used for injection experimental as an tool Highly transparent micromodel is required to observe changes of fluid in tunnels.
    This research uses PDMS (polydimehtylsiloxane) sheets as material for the micro-model. Wafer produced by photolithography acts as the substrate. The sheet is laminated with the substrate, leaving tunnels on the surface of the sheet for fluid to flow through. The micro-models used for this research are of two porous media geometric patterns: A. 0.1 mm * 0.2 mm cubic tube. The flow of the fluid in the micro-model is recorded with high speed camera, and the change of the contact angle with respect to flow rate in the images is analyzed by an image analyzing program. Different from the previous results, the dynamic contact angle related parameters α and β measured in this study are not definite as the flow velocity increases. The modified contact angle and the relative parameters α, β are used to modify the PDM model with the static contact angle as the parameter, and the modified model results are compared.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1. 前言 1 1.2. 研究目的 3 1.3. 文獻回顧及相關理論 3 1.3.1. 接觸角介紹 3 1.3.2. 微模型製作回顧 5 1.3.3. 前人的動態接觸角實驗 9 1.3.4. 管流方程式: 帕穗定律(Poiseuille’s law equation) 9 1.3.5. PDM(Pore Doublets Model)模式 10 1.4. 論文架構 12 1.4.1. 微模型製作 12 1.4.2. 注流過程 12 1.4.3. 影像分析 12 1.4.4. 實驗結果討論與結論 13 第二章 研究理論及方法 14 2.1. 微模型材料 15 2.2. 微模型製作 15 2.3. 微影製程步驟介紹 18 2.3.1. 晶圓清洗(Wafer cleaning)。 18 2.3.2. 烘烤(Dehydation Bake) 18 2.3.3. SU-8光阻塗佈(Spin Coating) 19 2.3.4. 軟烤(Soft Bake) 20 2.3.5. 曝光(Exposure) 21 2.3.6. 顯影(Develop) 22 2.3.7. 硬烤(Hard Bake) 22 2.3.8. PDMS片材翻印 23 2.4. 注流實驗介紹 24 2.4.1. 注流儀器、工具及流體 24 2.5. 視覺化儀器 25 2.6. 實驗流程 28 2.7. 影像分析方法 29 2.7.1. 影像分析步驟 30 第三章 實驗結果與討論 34 3.1. 實驗數據 34 3.2. 數據分析與討論 37 3.2.1. 接觸角實驗數據分析 37 3.2.2. 分析結果帶入PDM模式討論 39 第四章 討論與結論 45 4.1. 討論與結論 45 4.2. 建議 45 參考文獻 47

    1. Weitz, D. A., J. P. Stokes, R. C. Ball, and A. P. Kushnick (1987),
    Dynamic capillary pressure in porous media: Origin of the
    viscous-fingering length scale, Phys. Rev. Lett., 59, 2967–
    2970, doi:10.1103/PhysRevLett.59.2967.
    2. Geiger, S. L., and D. S. Durnford (2000), Infiltration in
    homogeneous sands and a mechanistic model of unstable flow, Soil
    Sci. Soc. Am. J., 64(2), 460–469,
    doi:10.2136/sssaj2000.642460x.
    3. Rose, W. , and Heins, R. W. ,J. Colloid Chem.,17, 39 (1962)
    4. Hoffman, R. L. (1975), A study of the advancing interface. I.
    Interface shape in liquid—gas systems, Journal of Colloid and
    Interface Science, 50(2), 228–241, doi:10.1016/0021-
    9797(75)90225-8.
    5. de Gennes PG. 1985. Wetting: statics and dynamics. Rev. Mod.
    Phys. 57:827–63
    6. Cox RG. 1986. The dynamics of the spreading of liquids on a solid
    surface. Part 1. Viscous flow. J. Fluid Mech. 168:169–94
    7. M. Bracke, F. De Voeght, P. Joos, The kinetics of wetting: the
    dynamic contact angle. progr. Colloid pol. Sci. 79, 142-149
    (1989)
    8. Bera, B., Gunda, N. S., Karadimitriou, N. K., Mitra, S.,
    Hassanizadeh, S. M., (2011), Fabrication of glass micro-model
    to perform multi-phase flow in a pore network structure,
    Conference Proceedings of the “ASME –JASME– KSME Joint
    Fluids Engineering Conference 2011”, Hamamatsu, Japan.
    9. Hsu, S.-Y., and M.Hilpert(2011),Incorporation of dynamic
    capillary pressure into the Green-Ampt model for
    infiltration,Vadose Zone J.,10,642–653.
    10. Green, W.H., and G. Ampt. 1911. Studies on soil physics: 1.
    Th e fl ow of air and water through soils. J. Agric. Sci. 4:1–
    24
    11. Chatenever, A., and J. C. Calhoun, Visual examinations of fluid
    behaviorin porous media, I, Trans. Am. Inst. Min. Metall. Pet.
    48
    Eng.,AIME, 195, 149-156, 1952.
    12. Thompson,J.D., Higgins,D.G. & Gibson,T.J. (1994). CLUSTAL W:
    improving the sensitivity of progressive multiple sequence
    alignment through sequence weighting, positions-specific gap
    penalties and weight matrix choice.Nuc. Ac. Res.22, 4673-4680.
    13. C. C. Mattax and J. R. Kyte, Ever see a water flood?, Oil Gas
    J. 59 115-128 (1961)
    14. M.Y.C. and P.F. , Glass bead micromodel study of solute
    transport. 1999.
    15. Cheng, J.-T. (2002), Fluid flow in ultrasmall structures, Ph.D.
    thesis,Purdue Univ., West Lafayette, Indiana
    16. <多相流於孔隙介質中主要流動機制之微模型實驗與研究.pdf>
    17. C.E.Baver Dynamic contact angles and wetting front instability
    in soils.2013
    18. Jo, B.-H., et al., Three-dimensional micro-channel
    fabrication in polydimethylsiloxane (PDMS) elastomer. Journal
    of microelectromechanical systems, 2000. 9(1): p. 76-81.
    19. Neethirajan, S., et al., Microfluidics for food, agriculture
    and biosystems industries. Lab on a Chip, 2011. 11(9): p.
    1574-1586.
    20. Baver, Christine, et al. "Relating dynamic contact angle to
    wetting front instability." EGU General Assembly Conference
    Abstracts. Vol. 15. 2013.
    21. de Gennes, Pierre-Gilles, Brochard-Wyart, Francoise, Quere,
    David Capillarity and Wetting Phenomena Drops, Bubbles, Pearls,
    Waves (2004)
    22. Blois, Gianluca, Julio M. Barros, and Kenneth T. Christensen.
    "A microscopic particle image velocimetry method for studying
    the dynamics of immiscible liquid–liquid interactions in a
    porous micromodel." Microfluidics and Nanofluidics 18.5-6
    (2015): 1391-1406.
    23. NIEBER, DAUTOV, EGOROV,SHESHUKOV, Dynamic Capillary Pressure
    Mechanism for Instability in Gravity-Driven Flows; Review and
    Extension to Very Dry Conditions, transp Porous Med (2005)
    58:147–172, DOI 10.1007/s11242-004-5473-5, Springer 2005

    QR CODE
    :::