跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃致詠
Chih-yung Huang
論文名稱: 藥物分子及酒精汽油之溶解度量測與關聯
指導教授: 李亮三
Liang-Sun Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 89
中文關鍵詞: 超臨界流體溶解度相平衡熱力學
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為二部分,第一部份為高壓下藥物溶解度關聯,收集近年文獻中15種藥物,於超臨界二氧化碳中溶解度數據,利用一溶液模式,即規則溶液模式(regular solution model)配合Flory-Huggins equation,在不同溫度及壓力下,描述藥物溶質的無限稀薄活性係數,進行藥物溶解度計算。藉由模式中,溶質莫耳體積視為可調參數與超臨界二氧化碳密度關聯,並將關係式模式進行無因次化修正,利用其來進行溶解度數據迴歸計算,最後將參數進行簡化與關聯,並使用MST、Chrastil兩個半經驗式比較結果。研究觀察使用規則溶液模式(regular solution model)配合Flory-Huggins equation計算15種藥物於超臨界二氧化碳中溶解度數據,總共412個實驗數據點,所得到之結果令人相當滿意。此外,進一步考慮模式中唯一參數,提出藥物分子與二氧化碳分子量比值有相關聯,使該模式更溶易應用於溶解度預測行為。

    第二部分為酒精汽油溶解度之量測,酒精汽油為未來不可或缺的產品,酒精因有容易吸收大氣中水氣,而可能造成酒精汽油中儲存於汽車油箱或地下儲槽,而產分相,建立相關液液相平衡數據亦是當重要,研究中以戊烷、己烷和環己烷之混合物為汽油替代組成,液-液平衡實驗系統包括,三組三成分系統:乙醇-水-戊烷、乙醇-水-己烷及乙醇-水-環己烷;三組四成份系統:乙醇-水-戊烷-己烷、乙醇-水-戊烷-環己烷及乙醇-水-己烷-環己烷;一組五成份系統:乙醇-水-戊烷-己烷-環己烷分別在293.15 K、303.15 K及308.15 K三個溫度下進行實驗,並與文獻數據進行比較,最後以UNIQUAC液相模式迴歸每個系統兩成份參數,運用在五成份系統擬合結果,實驗值與計算值誤差均小於RMSD小於0.02以下。


    This thesis is divided into two parts. The first part is the solid solubility data of 15 pharmaceutical compounds in supercritical carbon dioxide Under different temperatures and pressures, the infinite dilution activity coefficient for pharmaceutical compound is described by regular solution model associated with the
    Flory-Huggins equation.While correlating the data, the molarvolume of the solid solute is considered as a variable consisting of two parameters for the model. This volume is then transformed into a reduced form by introducing the critical density of carbon dioxide and even simplified to be with only one parameter involved. Comparing the correlation results obtained from the commonly used semi-empirical models of Mendez-Santigo-Teja and Chrastil. It is observed that regular solution model calculated with the Flory-Huggins equation of 15 pharmaceutical compounds in supercritical carbon dioxide solubility data, a total of 412 data points and obtained quite satisfactory results. In addition, a further consideration that the only parameter included in the present model could be expressed in terms of the ratio of the molecular weight of compound to that of CO2, and makes the model become a more
    general and could be applied for prediction.

    The second part of the solubility measurements of gasohol, the liquid-liquid equilibria of the mixtures consisted of ethanol, water, and the main components of gasoline fuel: pentane, hexane, and cyclohexane were experimentally determined. This study is related to the phase behavior when water in atmosphere is absorbed into ethanol + gasoline fuel (gasohol) and then possibly separates into two liquid phases in an automobile fuel tank or an underground storage tank. The liquid-liquid equilibria in this study include three ternary systems: ethanol + water + pentane, ethanol + water + hexane, and ethanol + water + cyclohexane; three quaternary systems: ethanol + water + pentane + hexane, ethanol + water + pentane + cyclohexane, and ethanol + water +hexane + cyclohexane; one quinary system: ethanol + water + pentane + hexane + cyclohexane. The present experiments were conducted at 293.15, 303.15, and 308.15 K, and the experimental data were collected and some were compared to that available in literature, and finally all data were correlated with the UNIQUAC
    activity coefficient model.

    中文摘要 I 英文摘要 II 表目錄 V 圖目錄 VII 符號說明(Ⅰ) IX 符號說明(Ⅱ) XI 第一章 緒論 1-1超臨界流體特性及應用 1 1-2 應用熱力學性質於固體溶解度重要性 3 第二章 固體藥物於超臨界二氧化碳中之溶解度關聯 2-1研究背景與動機 6 2-2數學模式 6 2-3 藥物溶解度計算結果與討論 11 第三章 結論 15 第四章 緒論 4-1前言 30 4-2 酒精汽油國際發展現況 30 4-3 研究動機與目的 31 第五章 酒精汽油之溶解度量測 5-1 液液相平衡理論 32 5-2 液液平行之形成 33 5-3 活性係數模式 35 第六章 實驗部分 6-1 實驗系統選擇 38 6-2 實驗藥品 38 6-3 實驗設備 38 6-4 樣品分析之條件 39 6-5 檢量線之配置 39 6-6 實驗步驟 39 6-7 實驗數據處理 40 第七章 溶解度量測結果與討論 44 第八章 結論 46

    參考文獻(Ⅰ)
    Ashour, I., Almehaideb, R., Fateen, S. E., and Aly, G., Representation of solid-supercritical fluid phase equilibria using cubic equation of state, Fluid Phase Equilib., 167 (2000) 41-61
    Bush, D. and Eckert, C. A., Prediction of solid-fluid equilibria in supercritical carbon dioxide using linear salvation energy relationships, Fluid Phase Equilibria, 150-151 (1998) 479-492
    Beckman, E. J., Supercritical and near-critical CO2 in green chemical synthesis and processing, J. Supercritical Fluids, 28 (2004) 121-191
    Ch, R., Garlapati, C. and Madras, G., Solubility of n-(4-ethoxyphenyl)ethanamide in
    supercitical carbon dioxide., J. Chem. Eng. Data., 55 (2010) 1437-1440
    Ch, R. and Madras, G., An association model for the solubilities of pharmaceuticals in supercritical carbon dioxide., Thermochimica. Acta., 507-508 (2010) 99-105
    Chen, P. Y., Shen, C. T., Liau, B. C., Wu, T. M., Shieh C. I., et al. Demonstration of
    continuous supercritical carbon dioxide anti-solvent purification and classific-
    ation of nano/micro-sized precipitates of algal zeaxanthin from Nannochloropsis
    oculata, J Taiwan Inst Chem. Eng, 42 (2011) 598-603
    Chen, Y. M. and Chen Y. P., Measurements for the solid solubilities of antipyrine, 4-aminoantipyrine and 4-dimethylaminoantipyrine in supercritical carbon dioxide, Fluid. Phase. Equilib, 282 (2009) 82-87
    Chen, Y. M., Lin, P. C., Tang, M. and Chen, Y. P., Solid solubility of antilipemic agents and micronization of gemfibrozil in supercritical carbon dioxide., J. Supercrit. Fluids., 52 (2010) 175-182
    Chrastil, J., Solubility of solids and liquids in supercritical gases, J. Phys. Chem., 86 (1982) 3016-3021
    De Zordi N., Kikic I., Moneghini M. and Solinas D., Solubility of pharmaceutical compounds in supercritical carbon dioxide, J Supercrit Fluids 66 (2012) 16-22
    Ely, J. F., Haynes, W. M. and Bain, B. C., Isochoric (P, Vm, T) measurements on CO2 and on (0.982CO2 + 0.018N2) from 250 to 330K at pressure to 35MPa, J. Chem. Thermodyn., 21 (1989) 879-894
    Fedors, R. F., A method for estimating both the solubility parameters and molar volume of liquids, Pol. Eng. Sci., 14 (1974) 147-154
    Garnier, S., Neau, E., Alessi, P., Cortesi. A. and Kikic, I., Modelling solubility of
    solids in supercritical fluids using fusion properties, Fluid Phase Equilib.,158-
    160 (1999) 491-500
    Goharshadi, E. K. and Hesabi, M., Estimation of solubility parameter using equations of state, J Mol Liq, 113 (2004) 125-132
    Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H. and Richon, D., Artificial Neural Network Modeling of Solubilities of 21 Commonly Used Industrial Solid Compounds in Supercritical Carbon Dioxide., 50 (2011) 211-226
    Gong, X.Y. and Cao, X. J., Measurement and correlation of solubility of artemisinin in supercritical carbon dioxide. Fluid. Phase. Equilib, 284 (2009) 26-30
    Huron, M. J. and Vidal, J., New mixing rules in simple equations of state for represen-
    ting vapor-liquid equilibria of strongly non-ideal mixtures, Fluid Phase Equilib.,
    3 (1979) 255-271
    Hosseini, M.H., Alizadeh, N. and Khanchi, A.R,. Solubility analysis of clozapine and lamotrigine in supercritical carbon dioxide using static system, J. Supercrit. Fluids, 52 (2010) 30-35
    Iwai, Y., Koga, Y., Fukuda, T., and Arai, Y., Correlation of solubilities of high-boiling components in supercritical carbon dioxide using a solution model. J Chem Eng Jpn., 25 (1992) 757-760
    Jung, J.and Perrut, M., Particle design using supercritical fluids: Literature and patent survey, J. Supercrit. Fluids, 20 (2001) 179-219
    Jain, A., Yang, G., and Yalkowsky, S. H., Estimation of total entropy of melting of organic compounds, Ins. Eng. Chem. Res, 43 (2004) 4376-4379
    Jacobsen, R. T. and Stewart, R. B., Thermodynamic properties of nitrogen including liquid and vapor phases from 63K to 2000K with pressures to 10,000 bar, J. Phys. Chem. Ref. Data, 2 (1973) 757-922
    Kramer, A.and Thodos, G. Adaptation of the Flory-Huggins theory for modeling supercritical solubilities of solids, Ind. Eng. Chem. Res. 27 (1988) 1506-1510
    Mendez-Santiago, J. and Teja, A. S., The solubility of solids in supercritical fluids, Fluid Phase Equilibria, 158-160 (1999) 501-510
    Pasquali, I., Bettini, R. and Giordano,. F. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics, Eur. J. Pharm. Sci., 27 (2006) 299-310
    Park, K. A,. Kim, K. H. and Hong, I. K,. Comparison of solubility parameters for alkane family obtained using cubic equation of state, J. Ind. Eng. Chem., 17 (2011) 213-217
    Park, C. I., Shin, M. S. and Kim, H., Solubility of climbazole and triclocarban in supercritical carbon dioxide: measurement and correlation, J Chem Thermody 41 (2009) 30-34
    Peng, D. Y. and Robinson, D. B., A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15 (1976) 59-64
    Reverchon, E. and De Marco I., Supercritical fluid extraction and fractionation of natural matter, J. Supercritical Fluids, 38 (2006) 146-166
    Su, C. S. and Chen, Y. P., Measurement and correlation for the solid solubility of non-steroidal anti-inflammatory drugs (NSAIDs) in supercritical carbon dioxide, J Supercrit Fluids, 43 (2008) 438-446
    Su, C.S., Chen, Y. M. and Chen, Y.P,. Correlation of solid solubilities for phenolic compounds and steroids in supercritical carbon dioxide using the solution model, J Taiwan Inst Chem Eng, 42 (2011) 608-615
    Sparks, D. L., Hernandez, R. and Estévez, L. A., Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation of a new model, Chem. Eng. Sci. 63 (2008) 4292-4301
    Shekunov, B. and York, P., Crystallization processes in pharmaceutical technology and drug delivery design, J. Crystal Growth, 211 (2000) 122-136
    Yamini, Y., Kalantarian, P., Hojjati. M., Esrafily. A., Moradi, M., Vatanara, A. and Harrian, I., Solubilities of flutamide, dutasteride, and finasteride as antiandro-
    genic agents in supercritical carbon dioxide: measurement and correlation, J. Chem. Eng. Data., 55 (2010) 1056-1059
    York P., Strategies for particle design using supercritical fluid technologies, Pharm Sci Tech Today, 2 (1999) 430-440.
    Yamini, Y. and Moradi, M., Measurement and correlation of antifungal drugs solubil-ity in pure supercritical CO2 using semiempirical models, J. Chem. Thermody., 43 (2011) 1091-1096


    參考文獻(Ⅱ)
    Abrams D. S., Prausnitz J. M., “Statistical Thermodynamic of Liquid Mixtures: A New Expression For the Excess Gibbs Energy of Partly or Completely Miscible Systems”, AIChE J., 21-1 (1975) 116-128
    Anderson T. F., Abrams D. S., Grens E. A., “Evaluation of Parameters for Nonlinear Thermodynamic Models”, AIChE Journal, 24-1 (1978) 20-29
    Esposito W.R., Floudas C.A., “Global Optimization in parameter Estimation of Nonlinear Algebraic Modles via the Error-in-Variables Approach”, Ind. Eng. Chem. Res, 37 (1998) 1841-1858
    Kemeny S., Manczinger J., Skjold-Jørgensen S., Toth K., “Reduction of Thermo-dynamic Data by Means of the Multiresponse Maximum Likelihood Principle”, AIChE J, 28 (1982) 20-30
    M. B. Gramajo de Doz, C. M. Bonatti, and H. N. Sólimo, “(liquid + liquid) equilibria of ternary and quaternary systems with two hydrocarbons, an alcohol, and water at 313.15 K systems containing cyclophexane, benzene, ethanol, and water,” The Journal of Chemical Thermodynamics, 35 (2003) 2055-2065
    M. B. Gramajo de Doz, C. M. Bonatti, and H. N. Sólimo, “liquidliquid equilibrium of water + ethanol + reformate,” Fluid Phase Equilibria, 230 (2005) 45-50
    H. Xu, H. F. Ju, W. Wang, and J. Huang, “Research on the liquidliquid equilibrium in system water- n-hexane-ethanol system,”Chemical Research and Application, 18 (2006), pp. 409-412
    L. Tang, and F. Liu, “Some Basic Properties of Hexane/alcohol mixture,” Journal of Wuxi University of Light Industry, 15 (1996) 313-317.
    Peschke N., Sandler S. I., “Liquid-liquid Equilibria of Fuel Oxygenate + Water + Hydrocarbon Mixtures”, J. Chem. Eng. Data, 40 (1995) 315-320
    Sørensen J. M., Magnussen T., Rasmussen P., Fredenslund A., “Liquid-liquid equilibrium data: their retrieval, correlation and prediction. Part II: correlation”, Fluid Phase Equilibria, 3 (1979) 47-82
    Vasquez V.R., Whiting W.B., “Regression of Binary Interaction Parameters for Thermodynamic Models Using an Inside-Variance Estimation method
    (IVEM) ”, Fluid Phase Equilibria, 170 (2000) 235-153
    Wilson, G. M., “Vapor-Liquid Equilibrium : XI. A New Expression for the Excess Free Energy of Mixing ”, J. Am. Chem., 86 (1964) 127-130

    QR CODE
    :::