跳到主要內容

簡易檢索 / 詳目顯示

研究生: 侯凱傑
Kai-Jie Hou
論文名稱: Deep Space Radiation Probe 結構與熱控的設計模擬與測試驗證
Design, Simulation, Test and Verification of Deep Space Radiation Probe Structure and Thermal Control
指導教授: 張起維
LOREN C. CHANG
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學與工程學系
Department of Space Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 228
中文關鍵詞: 結構與熱控
外文關鍵詞: Deep Space Radiation Probe
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Deep Space Radiation Probe 是一個由IDEASSat 任務延伸而來的酬載,由於發生在IDEASSat衛星上SEL (Single Event Latchup)導致IDEASSat任務壽命不如預期,於是便設計了Deep Space Radiation Probe 以了解太空環境中輻射對衛星所產生的危害。由於Deep Space Radiation Probe搭乘日本民間登月廠商 ispace 的Hakuto-R Mission2 所經過的太空環境不管是對結構,熱控還是輻射都比低軌道還要更加嚴苛,因此需要更加注意相關的設計。Hakuto-R Mission2是由日本的Ispace研發的衛星,其軌道會經過月球,最終登陸在月球之上,而Deep Space Radiation Probe會被固定在Hakuto-R外側以量測相關的輻射數據。本論文主要會介紹與討論到如何滿足Deep Space Radiation Probe 的結構以及在熱控需求上的設計,使其能再不管是在軌道上或是月球上都能正常運作。由於DSRP是固定在Hakuto-R外殼的外側,而非內側,因此在不管是振動對結構的破壞,還是環境中的極高、極低溫,都要面臨非常嚴苛的挑戰。本文將會介紹如何設計才能克服嚴苛的環境條件,以及相關模擬還有實際的測試驗證結果,還有過程中的經驗學習與討論。Deep Space Radiation Probe的研發會為未來不管是小型衛星還是其他各種會上太空的酬載提供更加了解太空輻射對儀器危害,以避免可能的危險性,提高任務壽命。


    Deep Space Radiation Probe(DSRP) is a payload which come up idea from the IDEASSat mission. Since the SEL (Single Event Latchup) caused the IDEASSat mission life to be less than expected, so that we design DSRP to understand the hazards of radiation on satellites in the space environment. Since the Deep Space Radiation Probe is going to be rideshare on the Hakato-R Mission2 which is developed from ispace, the space environment it passes through is even more severe than low-earth orbit in terms of structure, thermal control, and radiation, and thus requires more attention to the related design. Hakato-R Mission2 trans-lunar injection orbit will pass by the Moon and eventually land on the Moon, and the DSRP will be fixed on the out-plane of Hakato-R, in order to measure the radiation data. This paper will introduce and discusse how to design the structure and the thermal control systems of DSRP, so that the DSRP can function properly both in orbit and on the Moon surface. Since the DSRP is fixed to the out-plane of the Hakato-R Mission2 instead of the inside, it has to face very severe challenges of vibration damage to the structure, as well as the extremely high and low temperatures in the space environment. In this paper, we will also introduce the design which can overcome the severe environmental conditions, and the results of the related simulation and the environment testing, as well as the learning and discussion in this process. The development of the Deep Space Radiation Probe will provide a better understanding of the hazards of space radiation to the future payloads and satellites, which can avoid possible dangers and to increase the mission life.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 vii 表目錄 xii 一、 緒論 1 1-1 研究背景 1 1-1-1 前言 1 1-1-2 研究動機 2 1-2 深度太空輻射量測儀(DSRP)介紹 3 1-2-1 任務介紹 3 1-2-2 深度太空輻射量測儀(DSRP)基本架構與設計 5 1-3 環境介紹 8 1-3-1 DSRP軌道以及深太空環境介紹 8 二、 DSRP結構設計 14 2-1 基本規格 14 2-2 結構固定設計 16 2-3 酬載與衛星連接介面 19 2-4 座標系統 21 三、 DSRP熱控設計 22 3-1 基本設計概念[6] 22 3-2 元件溫度 26 3-3 DSRP的熱控設計 26 3-4 材料限制 32 四、 模擬分析 34 4-1 結構模擬 34 4-1-1 有限元素分析(Finite Element Analysis) 34 4-1-2 SOLIDWORKS模擬的 FEA前處理 35 4-1-3 DSRP的測試標準[11] 41 4-1-4 DSRP SolidWorks simulation setting 46 4-1-5 模擬結果分析 54 4-2 熱控模擬 111 4-2-1 有限差分法(Finite Difference Method) 111 4-2-2 Thermal Desktop模擬前處理 115 4-2-3 分別案例(軌道) 123 4-2-4 模擬結果分析 131 五、 測試結果 146 5-1 MLI測試 146 5-1-1 測試方法[31] 146 5-1-2 結果分析 149 5-2 整合測試結果分析 151 5-3 振動測試[11][12] 154 5-3-1 測試方法 154 5-3-2 結果分析 159 5-4 熱真空循環測試[11][12] 187 5-4-1 測試方法 187 5-4-2 結果分析 190 六、 結論 194 6-1 結構結論 194 6-2 熱控結論 194 6-3 未來與展望 195 參考文獻 196 附錄一 199 附錄二 202

    [1] Loren C. Chang et.al. DSRP-ICD Issue 01 Revision 18, 2023/06/02
    [2] Loren C. Chang et.al. The Deep Space Radiation Probe: Development of a First Lunar Science Payload for Space Environment Studies and Capacity Building. International Conference on Astronautics and Space Exploration (iCASE) Hsinchu, Taiwan, November 03-05, 2022
    [3] Varadis. RADFET VT01 Datasheet Rev 2.2 (April 2022)
    [4] Biesbroek, Robin, and Guy Janin. "Ways to the Moon." ESA bulletin 103 (2000): 92-99.
    [5] Hakuto-R Mission 1 | ispace. (n.d.). Ispace. https://ispace-inc.com/m1
    [6] Lienhard, John H. A heat transfer textbook. Phlogistron, 2005.
    [7] Bates, Stephen C., Kim S. Knight, and David W. Yoel. "High temperature transparent furnace development." AIP Conference Proceedings. Vol. 420. No. 1. American Institute of Physics, 1998.
    [8] Ross, R. G. "Quantifying MLI thermal conduction in cryogenic applications from experimental data." IOP Conference Series: Materials Science and Engineering. Vol. 101. No. 1. IOP Publishing, 2015.
    [9] Gilmore, David G., and Martin Donabedian. Spacecraft thermal control handbook. Ed. David G. Gilmore. Vol. 1. El Segundo, CA: Aerospace Press, 2002.
    [10] 實威國際. "SolidWorks Simulation原廠教育訓練手冊." (2011).
    [11] ISPACE, NCU Payload Interface Requirement Document. M2-RSP-PL-00003.
    [12] NASA, GENERAL ENVIRONMENTAL VERIFICATION STANDARD (GEVS) For GSFC Flight Programs and Projects. GSFC-STD-7000 April 2005
    [13] Lin, Edward, and James Stultz. "Cassini MLI blankets high-temperature exposure tests." 33rd Aerospace Sciences Meeting and Exhibit. 1995.
    [14] Moeini, E. "Thermal performance evaluation of a fabricated multilayer insulation blanket and validity of Cunnington-Tien correlation for this MLI." Cryogenics Journal (2013).
    [15] Geankoplis, C. J. "Transport Processes and Separation." Process Principles. Prentice Hall NJ, 2003.
    [16] SHELDAHL. "MLI包法".
    [17] APTEK. "APTEK 2711 datasheet".
    [18] Soler Chisabas, Roy Stevenson, et al. "Method for CubeSat thermal-vacuum cycling test specification." 47th International Conference on Environmental Systems, 2017.
    [19] Henninger, John H. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings. Vol. 1121. National Aeronautics and Space Adminitration, Scientific and Technical Information Branch, 1984.
    [20] Zwiener, J. M. "Thermal Vacuum Bakeout Specification for Contamination Sensitive Hardware." (1986).
    [21] Standard, General Environmental Verification, and A. Revision. Nasa goddard space flight center. GSFC-STD-7000, 2005.
    [22] "飛鼠號立方衛星之結構次系統." PhD diss., National Central University, 2020.
    [23] Mohammed, Adil, Sumith Yesudasan, and Sibi Chacko. "A multilayered photonic emitter for high-performance daytime radiative cooling." Microsystem Technologies 27 (2021): 2873-2887.
    [24] Mashkov, Petko, Tamara Pencheva, and Berkant Gyoch. "Reflow soldering processes development using infrared thermography." 2009 32nd International Spring Seminar on Electronics Technology. IEEE, 2009.
    [25] H. -L. Yu, Y. -L. Li, T. -Y. Liao, T. Wang, Y. Shi and S. -F. Tsai, "Fast and accurate emissivity and absolute temperature maps measurement for integrated circuits," 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2014, pp. 542-549, doi: 10.1109/ICCAD.2014.7001403.
    [26] Benson, Jim. "Thermal characterization of packaged semiconductor devices." Technical Brief 379 (2002).
    [27] 萬洪甫. "近場光碟熱效應的模擬與研究." (2006): 1-119.
    [28] Rafael Lopes Costa, Valeri Vlassov. Spacecraft Thermal Control Workshop, El Segundo, California, March 24-26, 2015. "PCB Effective Thermal Conductivity for Spacecraft Electronic Boxes Thermal Analysis and Design."
    [29] Beer, Ferdinand Pierre, et al. Mechanics of materials. Vol. 1. New York: mcgraw-Hill, 1992.
    [30] Mohan, Sivabalan. "Thermal Comparison of FR-4 and Insulated Metal Substrate PCB for GaN Inverter." Texas Instruments: Dallas, TX, USA (2019).
    [31] 盧昭暉. "熱傳導係數量測".
    [32] Robert Baumann, Kirby Kruckmeyer. "Radiation Handbook for Electronics".TEXAS INSTRUMENT.
    [33] ANALOG DEVICES."MAX3488ESA+ datasheet".
    [34] Microsemi. "SmartFusion2 SOM (System-On-Module) Hardware Architecture".Version 1.1
    [35] 頻率分析 - 2018 - SOLIDWORKS 說明. (n.d.). 頻率分析 - 2018 - SOLIDWORKS 說明. https://help.solidworks.com/2018/chinese/SolidWorks/cworks/c_Frequency_Analysis.htm#:~:text=%E6%AF%8F%E5%80%8B%E7%B5%90%E6%A7%8B%E5%9C%A8%E7%89%B9%E5%AE%9A,%E7%99%BC%E7%94%9F%E5%A4%A7%E4%BD%8D%E7%A7%BB%E5%92%8C%E6%87%89%E5%8A%9B%E3%80%82
    [36] 網格品質檢查 - 2016 - SOLIDWORKS 說明. (n.d.). 網格品質檢查 - 2016 - SOLIDWORKS 說明. https://help.solidworks.com/2016/chinese/SolidWorks/cworks/c_Mesh_Quality_Checks.htm
    [37] 3MTM Adhesive Transfer Tape 966 | 3M United States. (n.d.). 3MTM Adhesive Transfer Tape 966 | 3M United States. https://www.3m.com/3M/en_US/p/d/b40072018/
    [38] STK. "Space Environment and Effects Tool (SEET) evaluates the effects of the space environment on spacecraft".https://lsas-tec.co.jp/wp-content/themes/lsas-tec/pdf/15_SEET_ProductSpecsheet.pdf
    [39] Tim Panczak, Steve Ring, and Mark Welch (Cullimore and Ring Technologies). "A CAD-based Tool for FDM and FEM Radiation and Conduction Modeling" 981577, 1997
    [40] Chen, J., Andjelkovic, M., Simevski, A., Li,Y., Skoncej, P., Krstic, M.. 2019. Design of SRAM-based Low-Cost SEU Monitor for Self-Adaptive Multiprocessing Systems. 2019 22nd Euromicro Conference on Digital System Design. DOI: 10.1109/DSD.2019.00080.
    [41] Andjelkovic, M., et al.. 2020. Design of Radiation Hardened RADFET Readout System for Space Applications. 2020 23rd Euromicro Conference on Digital System Design, pp. 484-488, doi: 10.1109/DSD51259.2020.00082.
    [42] M. Alvarez et al., "On-Orbit measurements of TID and Dose Rate from two RADFETs on board NANOSAT-1B satellite," 2016 IEEE Radiation Effects Data Workshop (REDW), Portland, OR, USA, 2016, pp. 1-4, doi: 10.1109/NSREC.2016.7891725.
    [43] Welcome to Varadis | Our Product Range. (n.d.). Varadis. https://www.varadis.com/products/
    [44] 最大 von Mises 應力準則 - 2015 - SOLIDWORKS 說明. (n.d.). https://help.solidworks.com/2015/chinese/solidworks/cworks/r_maximum_von_mises_stress_criterion.htm

    QR CODE
    :::