跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范耀仁
Yao-Ren Fan
論文名稱: 線狀組織性中尺度對流系統之渦度分析模擬
指導教授: 禚漢如
Han-Ru Cho
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 92
語文別: 中文
論文頁數: 52
中文關鍵詞: 中尺度對流系統中尺度渦旋傾斜項
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用第五代中尺度數值模式(簡稱 MM5)來進行模擬1998年6月4-5日的中尺度對流系(MCS)的組織發展研究,並探討MCS與中尺度渦旋(MCV)之間的關係。模式中模擬出MCV伴隨於MCS中的特性,即主對流區為正的氣旋式渦度帶,後方層狀降水區為負的反氣旋式渦度帶。這樣正負渦度對偶的情形,主要為傾斜項(tilting term)作用所造成,並增加了下游方向對流輻合的機制。在MCS發展過程中,舊對流胞所造成的層狀雲區,有助於下游方向的新對流胞發展,乃因層狀降水造成的下衝流,使得負渦度得以加強維持。此外,隨著舊對流胞之正渦度的增強發展,造成下游方向的高層風場轉變,有利於新生對流胞廣大層狀雲區的發展。這樣加強的正渦度將有助於帶來南方的暖平流,提供上升氣流所需的暖濕空氣;而增強的負渦度則有助於帶來北邊的冷平流,進一步加強冷池的發展。這些皆顯示出MCV與MCS之間的密切關係。也藉由上述的的機制發展概念,MCS呈非對稱性(asymmetric)的發展,構成了線狀組織排列的中尺度對流系統。


    目 錄 摘要… … … … … … … … … … … … … ………………… … … ……i 致謝… … … … … … … … … … … … … ………………… … … ……ii 目錄… … … … … … … … … … … … … … … … … ……… … …iii 圖表說明… … … … … … … … … … … … … … … … ……… … …v 第一章 緒論… … … … …… … … … … … … … … … … … …… …1 § 1.1 前言… … … … … … … … … … … … … … … … ……1 § 1.2 研究回顧… … … … … … … … … … … … …… … … 2 § 1.3 研究動機與主題… … … …… … … … … … … … … … 6 第二章 個案挑選與綜觀環境介紹… … … … … … … …… … … ………8 § 2.1 個案挑選 … … … … … …… … … … … … … … ……… 8 § 2.2 衛星雲圖上MCS的發展… … … … … … … … … … … ……8 § 2.3 綜觀天氣系統的描述… … … … … … … … … … … ………9 第三章 數值模式… … … … … … … … … … ……………………… ……11 § 3.1 模式簡介… … … … … … … … … … … ………………… 11 § 3.2 模式設定與初始資料來源… … … … … … … … … ……… 12 第四章 模擬結果的校驗 … … … … … … … … … … … … ……………13 § 4.1 MCS的生成位置與發展 … … … … … … … … … ……… …13 § 4.2 綜觀環境之模擬結果… … … … … … … … … … … …… 14 第五章 中尺度對流系統的渦度發展… … … … … … … … … … ………15 § 5.1 700mb 渦度場 … … … … … … … … … ……………… … 15 § 5.2 450mb 渦度廠 … … … … … … … … … … ……………… 16 第六章 MCS之線狀組織發展概念… … … … … … … … … … ………… 17 § 6.1 初始發展 … … … … … … … … … … …………………… 17 § 6.2 下游對流胞的發展增強 … … … … … … … … … … …… 17 § 6.3 發展成熟 … … … … … … … … … … …………………… 17 第七章 結論與未來展望… … … … … … … … … … … …………………18 § 7.1 結論 … … … … … … … … … … ………………………… 18 § 7.2 未來展望 … … … … … … … … … … … …………………18 參考文獻… … … … … … … … … … … … … … … … … … … … 19 附表圖… … … … … … … … … … … … … …… … … … … ………22

    丘台光,1999: 華南及台灣地區中尺度對流系統分析與數值模擬研究(Ⅱ),國科會專題研究報告NSC 88-2111-M-052-004-AP6。
    Biggerstaff, M. I. and R. A. Houze,1991a: Kinematic and precipitation structure of the 10-11 June 1985 squall line. Mon. Wea. Rev., 119, 3035-3065.
    Biggerstaff, M. I. and R. A. Houze,1991b: Midlevel vorticity structure of the 10-11 June 1985 squall line. Mon. Wea. Rev., 119, 3066-3079.
    Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines ofprecipitation : severe squall lines in Oklahoma during the spring. J.Atmos. Sci., 42, 1711-1732.
    Chisholm, A.J., and J.H. Renick, 1972: The kinematics of multicell and supercell Alberta hailstorms. Alberta Hail Studies, Research Council of Alberta Hail Studies, Rep. 72-2, Edmonton, Canada, 24-31.
    Chong, M., and O. Bousqet, 1999: A mesovortex within a near-equatorial mesoscale convective system during TOGA COARE. Mon. Wea. Rev., 127, 1145-1156.
    Fang, Z., 1985: The preliminary study of medium-scale cloud cluster over Changjiang basin in summer. Adv. Atmos. Sci., 2, 334–340
    Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of midlatitude squall line in two-dimensions. J. Atoms. Sci., 65, 215-248.
    Houze, R. A., 1977 : Structure and dynamics of a tropical squall-linesystem. Mon. Wea. Rev., 105, 1540-1567.
    Houze, R.A., S.A. Rutledge, M.I. Biggerstaff, and B.F. Smull, 1989: Interpretation of Doppler weather radar displays of mid-latitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608-619.
    Jorgensen, D. P., M. A. LeMone, and S. B. Trier,1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation,circulation,and surface energy fluxes. J. Atmos. Sci., 54, 1961-1985.
    Leary, F. J., et al. (1984). Males exposed in utero to diethylstilbestrol. Journal of the American Medical Association, 252, 2984–2989.
    Ludlam, F. H., 1963 : Severe local storms: a review. Meteor. Monogr., 5,Amer. Meteor. Soc., 1-30.
    Marwitz, J.D., 1972b: The structure and motion of severe hailstorms. Part II: Multi-cell storms. J. Appl. Meteor., 11, 180-188.
    NICHOLLS, P. N. 1987, J.Amer.Soc. Information Science 38, 443
    Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413-3436.
    Smull, B. F., and R. A. Houze, Jr., 1985: A midlatutude squall line with a trailing region of stratiform rain: Radar and satellite observation. Mon. Wea. Rev., 113, 117-133.
    Szeto, K.K., R.E. Stewart, and C.A. Lin, 1988b: Mesoscale circulations forced by the melting of snow in the atmosphere. Part II: Application to meteorological features. J. Atmos. Sci., 45, 1642-1650.
    Tao, Wei-Kuo, Joanne Simpson, 1989: Modeling Study of a Tropical Squall-Type Convective Line. Journal of the Atmospheric Sciences ,46 pp. 177Ð202.
    Weisman, M.L., and J.B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520.
    Yu C.-K., B. J.-D. Jou., and B. F. Smull., 1999: formative stage of a long-lived mesoscale vortex observed by airborne doppler radar. Mon. Wea. Rev., 127, 838-857.

    QR CODE
    :::