跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林枏恩
Nan-an Lin
論文名稱: 土石流形成沖積扇過程之實驗研究
指導教授: 周憲德
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 沖積扇流動層坡度滲流速度剖面
外文關鍵詞: Alluvial Fan, Flow layer, Topset slope, Infiltration, Velocity profiles
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高降雨強度事件帶來山洪及相伴而生之坡體滑動、土石流及洪流等事件,對民眾及交通設施造成嚴重災害損失甚大。台灣東澳台九線在2010 年10月受梅姬颱風影響,引發土石流直接掩埋蘇花公路至太平洋海岸線而形成沖積扇(alluvial fan),本研究探討土石流形成沖積扇之動態過程與堆積機制,並在前人的研究上探討向源回堵發生的情形與發生機制。本研究進行小尺度渠槽實驗,搭配相機與高速攝影機,對顆粒流堆積歷程、堆積角度、水深、滲流和流動層速度作分析與探討。以不同顆粒粒徑(D)、水入流量(Qw) 、顆粒入流量(Qs)及渠床長度(L)作為實驗主要控制因素,水流量與顆粒入流量之比值,即水砂排放比(n)為本研究重要的無因次參數。由水砂排放比來研究回堵發生的機制與坡度變化的關係,研究結果顯示堆積坡度與水砂排放比成反比關係,且在某個臨界值之後,坡度會劇烈爬升。本研究使用質點影像測速法(Particle Image Velocimetry, PIV)探討顆粒流動層速度分佈情形。研究結果顯示,在水位線略高於顆粒流表面時,受邊壁效應(wall effect)影響,流動層速度剖面遵循超穩態流變學(super-stable heap rheology, SSH)之指數分佈;而水位線等於顆粒流表面時,速度剖面呈現一趨近於線性的流速分布,水位線低於顆粒表面時,上層顆粒無法被水推動,只受重力的影響往下游運移,流速分布則較無明確趨勢。


    Mountain floods accompanied with landslides, slope avalanches and debris flows often cause tremendous disasters to downstream residents and infrastructures. The dynamic process and deposit mechanism of alluvial fans by torrential flows is experimentally explored in this study. An acrylic flume experiment is adopted to observe the deposit process of granular flows, deposit angle of topset, infiltration of granular ,and flow patterns with a high-speed camera. The particle size (D), water discharge (Qw), granular discharge (Qs) , and bed length(L) dominates the flow patterns, and the slopes of topset mainly depend on the ratio of granular discharge to water discharge.The slope of topset increases with increasing sediment concentration ,but increasing abruptly exceeding a specific value. The velocity profiles of the flowing layer are explored by using particle image velocimetry (PIV). The velocity profiles in the flowing layer depict SSH rheology when the free surface is substantially higher than granular-flow surface. When the free surface is substantially equal to granular-flow surface, the velocity profiles approximates linear.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 v 圖目錄 vi 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 3 1.3 研究方法 3 1.4 論文架構 3 第二章 文獻回顧 6 2.1沖積扇理論 6 2.2堆積型態 7 2.3速度剖面 12 2.4 滲流 13 第三章 實驗配置與分析方法 15 3.1實驗渠槽配置 15 3.2影像擷取系統 16 3.3顆粒材料性質 17 3.4實驗步驟 18 3.5影像分析方法 21 第四章 實驗結果與討論 22 4.1流量率定 22 4.1.1流槽漏斗顆粒出流量率定,Q_s 22 4.1.2水流量率定,Q_w 23 4.1.3水砂排放比n 23 4.2 顆粒流動行為 24 4.2.1初始階段與穩定階段 24 4.2.2向源回堵 25 4.3 初始階段角度、長度與時間之關係 26 4.3.1顆粒流堆積角度 45 4.4 顆粒實際流量 53 4.5 顆粒的滲透 56 4.5.1滲透係數實驗 56 4.5.2顆粒滲透下之水位線計算 58 4.6水深與流動層厚度 62 4.7速度剖面 66 第五章 結論與建議 71 5.1 結論 71 5.2 建議 72 參考文獻 73

    [1] Armanini, A., Capart, H., Fraccarollo, L., and Larcher, M. (2005).
    Rheological stratification in experimental free-surface flows of
    granular–liquid mixtures. Journal Of Fluid Mechanics, 532, 269-319.
    [2] Lucy Clarke , Timothy A. Quine, Andrew Nicholas(2009).
    An experimental investigation of autogenic behaviour during alluvial
    fan evolution.
    [3] Chou, H. T., Lee, C. F., Chung, Y. C., and Hsiau, S. S. (2012a).
    Discrete element modelling and experimental validation.
    [4] Gilbert, G. K. (1890). Lake Bonneville. Monographs of the U. S.
    Geological Survey, 1, 438 p.
    [5] GDR MiDi. (2004) “On dense granular flow.” European Physical
    Journal E, 14(14), 341-365
    [6] Jop, P., Y. Forterre, and O. Pouliquen (2005) “Crucial role of
    sidewalls in granular surface flows: consequences for the rheology.”
    Journal of Fluid Mechanics, 541, 167-192
    [7] Pouliquen, O. (1999) “Scaling laws in granular flows down rough
    inclined planes.” Physics of Fluids, 11, 542
    [8] Luigi Fraccarollo • Michele Larcher • Aronne Armanini(2007)
    Depth-averaged relations for granular-liquid uniform flows
    over mobile bed in a wide range of slope values
    [9] Erica J. Powell, Wonsuck Kim, and Tetsuji Muto(2012).
    Varying discharge controls on timescales of autogenic storage
    and release processes in fluvio-deltaic environments:Tank
    experiments
    [10] Maurits van dijk, Maarten g. kleinhans, George postma and Erin
    kraal(2012). Contrasting morphodynamics in alluvial fans and fan
    deltas:effect of the downstream boundary
    [11] Hirotaka Ochiai. Yasuhiko Okada. Gen Furuya.Yoichi Okura .
    Takuro Matsui .Toshiaki Sammori . Tomomi Terajima.Kyoji
    Sassa(2004) . A fluidized landslide on a natural slope by artificial
    rainfall
    [12] Kyoji sassa (2000) Mechanism of flows in granular soils
    [13] Gonghui Wang, Kyoji Sassa(2002) Pore-pressure generation and
    movement of rainfall-induced
    landslides: effects of grain size and fine-particle content
    [14] Thielicke, W., Stamhuis, E. J., D'Errico, J., Schwarz, D. M., Long,
    D.,Garcia, D., et al. (2010). PIVlab - time-resolved particle image
    velocimetry (PIV) tool.
    [15]吳俊銓(2012). 山洪濁流形成沖積扇之實驗研究. 國立中央大學
    土木工程研究所碩士論文.

    QR CODE
    :::