| 研究生: |
賴宏維 Hong-Wei Lai |
|---|---|
| 論文名稱: |
單一斷層餘震時空風險分析 Analysis of space-time hazard on a single fault |
| 指導教授: |
陳玉英
Yuh-Ing Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 餘震發生率冪次遞減法則 、餘震時間規模風險模式 、機率增益 、勝算比增益 、相對餘震風險圖 、接收者操作特徵曲線 |
| 外文關鍵詞: | Omori-Utsu law, Gutenberg-Richter magnitude frequency law, Reasenberg-Jones time-magnitude model, odds gain, relative aftershock hazard map, receiver operating characteristic curve |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
強震發生後經常讓建物結構受損且造成人員傷亡或受困,此時有效的即時評估強餘震風險將有助於緊急救災行動的管理。傳統上使用Reasenberg-Jones (RJ)模型描述餘震的時間-規模風險,而空間風險的評估則利用變動半徑或固定半徑點格法結合RJ模型。事實上在強震發生的短期內,資料蒐集較為困難也稀少,採用點格法評估空間風險效率較低。本文利用2008年M_W 7.9的中國汶川地震發生之前且位於龍門山斷層附近的地震資料建立空間風險模型。加入該空間風險模型推廣RJ模型,記作SRJ模型,用以分析汶川地震後餘震的時空規模風險。根據SRJ模型或是根據RJ模型結合點格法計算龍門山斷層附近餘震的相對風險,並製作相對餘震風險圖進行餘震預警。最後本文根據接收者操作特徵曲線及其延伸的統計準則,評估藉由相對餘震風險圖預警未來餘震發生區域的效果。本文發現使用歷史地震資料所建立的空間模型,可改善點格法在即時評估空間風險時面臨資料稀少的問題,且能夠有效預警單一斷層地震的強餘震於未來一段時間內發生的空間。
After a drastic earthquake, the building structures are damaged and some people may be trapped or hurt. At this moment, the near real-time assessment of strong aftershocks is needed for the management of emergency rescue. To do so, the RJ model is conventionally used to describe the time-magnitude hazard of aftershocks. The RJ model incorporating with the gridding method with a fixed radius or varying radii is traditionally used to assess the spatial hazard of aftershocks. However, in the early stage of a drastic earthquake, data collection is difficult. Hence, the sparsely data usually bring up a less efficient assessment of spatial hazard aftershock. Therefore, a new spatial hazard model is constructed based on data before the 2008 M_W7.9 Wenchuan earthquake near the Longmenshan fault. The model is denoted by SRJ model since it is a generalization of the RJ model with the spatial hazard. The relative aftershock hazard (RAH) map can be obtained by using the SRJ or the gridding based methods. Finally, according to a variety of criteria based on receiver operating characteristic curve, the effectiveness of different RAH maps is evaluated on depicting the hazardous area of future large aftershocks of the Wenchuan earthquake.
參考文獻
Aki, K. (1965). Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bull. Earthq. Res. Inst., Tokyo Univ., 43, 237-239.
Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of mathematical psychology, 12(4), 387-415.
Chen, Y. I., Huang, C. S., & Liu, J. Y. (2015). Statistical analysis of earthquakes after the 1999 MW 7.7 Chi-Chi, Taiwan, earthquake based on a modified Reasenberg–Jones model. Journal of Asian Earth Sciences, 114, 299-304.
Chen, F., Xue, Y., Tan, M. T., & Chen, P. (2015). Efficient statistical tests to compare Youden index: accounting for contingency correlation. Statistics in medicine, 34(9), 1560-1576.
Gerstenberger, M. C., Wiemer, S., Jones, L. M., & Reasenberg, P. A. (2005). Real-time forecasts of tomorrow's earthquakes in California. Nature, 435(7040), 328.
Gerstenberger, M. C., Jones, L. M., & Wiemer, S. (2007). Short-term aftershock probabilities: Case studies in California. Seismological Research Letters, 78(1), 66-77.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the american statistical association, 90(430), 773-795.
Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari, Giorn., 4, 83-91.
Lusted, L. B. (1960). Logical analysis in roentgen diagnosis: memorial fund lecture. Radiology, 74(2), 178-193.
McHugh, M. L. (2009). The odds ratio: calculation, usage, and interpretation. Biochemia medica: Biochemia medica, 19(2), 120-126.
Molchan, G. M., & Kagan, Y. Y. (1992). Earthquake prediction and its optimization. Journal of Geophysical Research: Solid Earth, 97(B4), 4823-4838.
Morris, J. A., & Gardner, M. J. (1988). Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. British Medical Journal (Clinical Research Edition), 296(6632), 1313-1316.
Ogata, Y. (1983). Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. Journal of Physics of the Earth, 31(2), 115-124.
Omori, F. (1894). On the aftershocks of earthquake. Journal of the College of Science, Imperial University of Tokyo, 7, 111-200.
Reasenberg, P. A., & Jones, L. M. (1989). Earthquake hazard after a mainshock in California. Science, 243(4895), 1173-1176.
Reasenberg, P. A., & Jones, L. M. (1994). Earthquake aftershocks: update. Science, 265(5176), 1251-1253.
Sarlis, N. V., & Christopoulos, S. R. G. (2014). Visualization of the significance of Receiver Operating Characteristics based on confidence ellipses. Computer Physics Communications, 185(3), 1172-1176.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611.
Shi, Y., Liu, J., & Zhang, G. (2001). An evaluation of Chinese annual earthquake predictions, 1990–1998. Journal of Applied Probability, 38(A), 222-231.
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293.
Utsu, T. (1961). A statistical study on the occurrence of aftershocks. Geophys. Mag., 30, 521-605.
Utsu, T., & Ogata, Y. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1), 1-33.
Wiemer, S., & Katsumata, K. (1999). Spatial variability of seismicity parameters in aftershock zones. Journal of Geophysical Research: Solid Earth, 104(B6), 13135-13151.
Wiemer, S., & Wyss, M. (1997). Mapping the frequency‐magnitude distribution in asperities: An improved technique to calculate recurrence times?. Journal of Geophysical Research: Solid Earth, 102(B7), 15115-15128.
Wiemer, S. (2000). Introducing probabilistic aftershock hazard mapping. Geophysical Research Letters, 27(20), 3405-3408.
Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859-869.
Wu, Y. M., Chen, S. K., Huang, T. C., Huang, H. H., Chao, W. A., & Koulakov, I. (2018). Relationship between earthquake b‐values and crustal stresses in a young orogenic belt. Geophysical Research Letters, 45(4), 1832-1837.
Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32-35.