跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張竣傑
Jhang-Jyun Jie
論文名稱: 以流程導向設計電動車智能化生產流程
Process oriented design of intelligent production process of electric vehicles
指導教授: 高信培
Hsin-Pei Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 66
中文關鍵詞: 工業4.0智能工廠電動車
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業4.0的時代來臨,雲端運算、物聯網(IoT)等技術被運用在生產上,這些新的科技連繫實體與數位、促進良好協作,使得人員便於取得跨部門、合作夥伴、廠商及產品等資料,這也使得智能工廠的概念因應而生。智能工廠強調的是藉助物聯網帶來的互聯性、對實時數據的獲取能力,以及引入虛實整合系統(Cyber-Physical System, CPS),使機器能夠相互通信並相互協商,根據不斷變化的系統動態重新配置所需的資源。讓生產變得更快速、精準、聰明。
    現今地球環境中的石油能源因人為的開採及使用,存量正在逐漸減少中,迫使人類開始尋找各種替代能源,例如液化石油氣、乙醇汽油等,而其中又以電能為最佳的替代方案,因其可完全擺脫燃料的限制。2008年Tesla推出第一輛使用鋰電池的純電動車,全球電動汽車市場規模日益擴大。截至2020年全球累計已超過1000萬輛電動車(含油電混合車,不包括機車),已連續兩年增長4成,佔全部四輪車輛的1%(International Energy Agency,《World Energy Outlook 2020》)。
    本研究利用整合資訊架構(Architecture of Integrated Information System, ARIS)對電動車製造商之智能化生產流程進行建模分析,將CPS導入原電動車生產流程中,使得新的生產流程更易了解,再使用統一塑模語言(Unified Modeling Language, UML) 建模出各類視圖,藉此可以更視覺化的了解不同視圖中所要達成的目標,以讓流程中各部門的成員們在溝通協調彼此所進行的業務時更為順暢,減少溝通所需的時間以及溝通錯誤所造成的各種浪費(材料、機器、人工、不良品...等),進而提升生產效率。


    With the advent of the era of Industry 4.0, technologies such as cloud computing and the Internet of Things (IoT) are used in production. These new technologies connect physical and digital, promote good collaboration, and make it easy for personnel to obtain cross-department, partners, manufacturers and Products and other materials, which also makes the concept of smart factory born. The smart factory emphasizes the interconnectivity brought by the Internet of Things, the ability to obtain real-time data, and the introduction of the Cyber-Physical System (CPS), which enables machines to communicate and negotiate with each other, according to the changing system dynamics. Reconfigure the required resources. Make production faster, more precise and smarter.
    This study uses the Architecture of Integrated Information System (ARIS) to model and analyze the intelligent production process of electric vehicle manufacturers, and import CPS into the original electric vehicle production process, making the new production process easier to understand and reuse. Unified Modeling Language (UML) models various views, so that the goals to be achieved in different views can be more visually understood, so that members of various departments in the process can communicate and coordinate with each other. The business is smoother, reducing the time required for communication and various wastes caused by communication errors (materials, machines, labor, defective products, etc.), thereby improving production efficiency.

    摘要 i Abstract ii 圖目錄 vi 表目錄 viii 第一章 緒論 - 1 - 1-1 研究背景 - 1 - 1-2 研究目的 - 2 - 1-3 研究架構 - 3 - 第二章 文獻探討 - 4 - 2-1 電動汽車產業探討 - 4 - 2-1-1 電動汽車產業概況 - 4 - 2-1-2 電動汽車未來發展 - 5 - 2-2 智能工廠 - 7 - 2-2-1 智能工廠發展背景 - 7 - 2-2-2 智能工廠核心技術 - 8 - 2-2-3 智能工廠架構 - 10 - 第三章 研究方法 - 14 - 3-1 整合資訊架構 - 14 - 3-1-1 ARIS 四觀點 - 14 - 3-1-2 ARIS 三階段 - 19 - 3-2 統一塑模語言 - 20 - 3-2-1 類別圖(Class Diagram) - 21 - 3-2-2 元件圖(Component Diagram) - 22 - 3-2-3 部署圖(Deployment Diagram) - 23 - 3-2-4 物件圖(Object Diagram) - 24 - 3-2-5 活動圖(Activity Diagram) - 24 - 3-2-6 使用案例圖(Use Case Diagram) - 26 - 3-2-7 狀態圖(State Diagram) - 27 - 3-2-8 循序圖(Sequence Diagram) - 29 - 3-2-9 合作圖(Collaboration Diagram) - 31 - 第四章 個案應用 - 32 - 4-1 個案公司描述 - 32 - 4-2 應用整合資訊架構 - 34 - 4-2-1 As-Is Model - 34 - 4-2-2 To-Be Model - 37 - 4-1 應用統一塑模語言 - 40 - 4-1-1 使用案例圖 - 41 - 4-1-2 活動圖 - 42 - 4-1-3 類別圖 - 43 - 4-1-4 循序圖 - 44 - 4-1-5 元件圖 - 47 - 4-1-6 部署圖 - 48 - 第五章 結論與建議 - 49 - 5-1 研究結論 - 49 - 5-2 後續研究建議 - 50 - 參考文獻 - 51 -

    英文文獻
    [1] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee and B. Yin, "Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges,", 2018
    [2] Sadiku, Matthew & Ashaolu, Tolulope Joshua & Ajayi-Majebi, Abayomi & Musa, Sarhan. Smart Factory: A Primer, 2021
    [3] P.P. Ray, A survey on Internet of Things architectures, 2018
    [4] Chang, Tien-Hsiang & Fu, Hsin-Pin & Ou, J.-R & Chang, T.-S, An ARIS-based model for implementing information systems from a strategic perspective, 2007
    [5] Ghobakhloo, M., "The future of manufacturing industry: a strategic roadmap toward Industry 4.0", 2018
    [6] D. Sinha and R. Roy, "Reviewing Cyber-Physical System as a Part of Smart Factory in Industry 4.0", 2020
    [7] Peters, Steven, “Digitalization of Automotive Industry – Scenarios for Future Manufacturing.”, 2016
    [8] Thoben, Klaus-Dieter & Wiesner, Stefan & Wuest, Thorsten. "Industrie 4.0 and Smart Manufacturing", 2017
    [9] Giacomo Büchi, Monica Cugno, Rebecca Castagnoli,Smart factory performance and Industry 4.0, 2020
    [10] Qi, Qinglin & Tao, Fei. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison, 2018
    [11] Zheng, Maokuan & Ming, Xinguo. Construction of cyber-physical system–integrated smart manufacturing workshops: A case study in automobile industry, 2017
    [12] Werner Kritzinger, Matthias Karner, Georg Traar, Jan Henjes, Wilfried Sihn,
    Digital Twin in manufacturing: A categorical literature review and classification, 2018
    [13] Gurjanov, Zakoldaev, Shukalov and Zharinov, Formation principles of digital twins of Cyber-Physical Systems in the smart factories of Industry 4.0, 2018
    [14] Matthias Scholer, Rainer Müller, Modular configuration and control concept for the implementation of human-robot-cooperation in the automotive assembly line, 2017
    [15] Jiang J-R., An improved cyber-physical systems architecture for Industry 4.0 smart factories, 2018
    [16] Philippe Kruchten, Architectural Blueprints—The “4+1” View Model of Software Architecture, 1995

    中文文獻
    [1] 張育嘉,以UML建構一人因肌肉骨骼傷害防治系統,2017。
    [2] 鄭翠蓮,應用ERP與ARIS系統於企業流程改善之研究—以中小企業ACC公司為例,2017。
    [3] 陳詩凱,全面資源管理架構---以音響喇叭智能工廠為實證研究,2021
    [4] 劉賢治,半導體智能工廠烤箱系統整合之研究-以A公司為例,2018
    [5] 陳民議,導入物聯網技術的智能生產線建置模式,2015

    QR CODE
    :::