跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江長鴻
Chang-Hun Jiang
論文名稱: 高功率環型面射型雷射
High Power Ring-Type Vertical-Cavity Surface-Emitting Laser
指導教授: 楊英杰
Ying-Jay Yang
許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 93
語文別: 英文
論文頁數: 65
中文關鍵詞: 面射型雷射半導體雷射
外文關鍵詞: semiconductor laser, surface-emitting laser
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高功率單模態的面射型雷射,一直是近年來大家努力的方向之一。主要受限於發光的孔徑大小,單模態面射型雷射的特性,一直難以提昇。
    本文從環形的發光孔徑出發,藉由鋅擴散和離子佈值技術,嘗試以不同的發光幾何孔徑,來達成高功率和單一空間模態的操作特性,
    在實驗上,主要設計並製作了兩種幾何圖形作為發光孔徑,分別是環形發光孔徑和花瓣狀的環型發光孔徑。他們都是由雷射陣列的觀點來審視,尤其是後者,實際的發光孔徑就是雷射陣列。從量測得到的特性上,環形的元件可達到14 mW 的高功率,2 mW單模功率。而花瓣狀的環型發光孔徑,也具有14 mW 的高功率,單點(single spot)的功率更大於7.5 mW,而且兩者都具有半高寬在5-6度之間的低發散角。這也證明了這種幾何圖形的發光孔徑,搭配上鋅擴散和離子佈值技術,具有相當優異的特性。


    High power and single spatial mode vertical cavity surface-emitting lasers ware developed in recent years. It’s mainly limited by the magnitude of light-emitting aperture, the characteristics of single mode VCSEL is difficult to improve.
    In this thesis, we demonstrate the single spatial mode vertical-cavity surface-emitting lasers (VCSEL) with a ring-shaped light-emitting aperture and single spot floral ring-type laser array, respectively. These devices are realized by the Zn diffusion and ion-implantation technique, at a wavelength of 850nm. Relative to the control VCSEL with an ordinary circular aperture and the same geometry and size, these demonstrated devices can suppress the higher-order transverse mode more effectively without affecting the threshold current and output power. Compared with typical reported single-mode VCSELs, a larger light-emitting aperture and current-confined area with a smaller divergence angle of the output beam, and lower differential resistance are achieved with these present structures.

    摘要 i Abstract ii 誌謝 iii Contents iv Figures and tables list vi Chapter 1 Introduction 1 1.1 The epitaxial structure of VCSEL 3 1.2 Electrical and optical configurations of VCSELs 5 1.3 The problems of single-mode VCSELs 8 1.4 Outline of this thesis 10 Chapter 2 Theories 11 2.1 Effects of zinc diffusion on VCSEL 11 2.2 Ion implantation 14 2.3 The ring-shaped light-emitting aperture 17 2.4 The floral ring-type array 21 Chapter 3 Experiments 26 3.1 Zinc diffusion 26 3.2 Ion implantation 29 3.3 Metal contact and Trench 31 3.4 Rapid thermal anneal 33 Chapter 4 Results and discussions 36 4.1 The measurement system setup 36 4.2 Ring-shaped light-emitting aperture 39 4.3 The floral ring-type array 47 Chapter 5 Conclusions 57 Reference 59 Publication list 65

    References:
    [1] F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristic of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett., vol. 55, pp. 221–222, Jul., 1989.
    [2] K. H. Gulden, M. Brunner, S. Eitel, H.P. Gauggel, R. Hovel, S. Hunziker, and M. Moser “VCSEL arrays for high speed optical links,” 2001 IEEE GaAs Digest, pp.53-56, 2001
    [3] http://www.ulm-photonics.de/
    [4] K. D. Choquette and H.Q. Hou, “Vertical-cavity surface emitting lasers: moving from research to manufacturing,” Proc. of IEEE, vol 85, pp. 1730-1739, 1997
    [5] L. A. Coldren, and S. W. Corzine, Chapter 3 “Diode Lasers and Photonic Integrated Circuits,” Wiley, New York, 1995.
    [6] N. N. Ledentsov, “Long-wavelength quantum-dot lasers on GaAs substrates: From media to device concepts,” IEEE J. Select. Topics Quantum Electron., vol 8, n 5, pp. 1015-1024, Sep-Oct, 2002
    [7] H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett. vol. 69, pp. 3140-3142, Nov, 1996.
    [8] K. L. Lear, R. P. Schneider, K. D. Choquette, S. P. Kilcoyne, J. J. Figiel, and I. C. Zolper, “Vertical cavity surface emitting lasers with 21% efficiency by metalorganic vapor phase epitaxy,” IEEE Photonics. Technol. Lett., vol. 6, Sep, 1994.
    [9] D. L. Huffaker, L. A. Graham, H. Deng, and D. G. Deppe, “Sub-40 μA continuous-wave lasing in an oxidized vertical-cavity surface-emitting laser with dielectric mirrors,” IEEE Photon. Tech. Lett. vol. 8, pp. 974-976, 1996.
    [10] D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined buried ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett., vol. 65, pp. 97-99, 1994.
    [11] B. M. Hawkins, R. A. Hawthorne, III, J. K. Guenter, J. A. Tatum, and J. R. Biard, “Reliability of various size oxide aperture VCSELs,” Proc. Conf. 52nd Electronic Components and Technology., pp. 540–550, 2002.
    [12] D. Gazula, J. Ahn, D. Lu, H. Huang, and D. G. Deppe, “Intracavity grating-confined all-epitaxial vertical-cavity surface-emitting laser based on selective interface Fermi-level pinning,” Appl. Phys. Lett., vol. 86, 161117, 2005.
    [13] N. Iwai, T. Mukaihara, N. Yamanaka, M. Itoh, S. Arakawa, H. Shimizu, and A. Kasukawa, “1.2μm highly strained GaInAs/GaAs quantum well lasers for single mode fiber datalink,” Electron. Lett., vol. 35, pp.1079–1081, 1999.
    [14] N. Tansu, J. Y. Yeh, and L. J. Mawst, “Extremely-low threshold-current-density InGaAs quantum well lasers with emission wavelength of 1215–1233 nm,” Appl. Phys. Lett., vol. 82, no. 23, pp. 4038–4040, 2003.
    [15] P. Sundgren, R. M. von Wurtemberg, J. Berggren, M. Hammar, M. Ghisoni, V. Oscarsson, E. Odling, and J. Malmquist, “High-performance 1.3μm InGaAs vertical cavity surface emitting lasers,” Electron. Lett., vol. 39, pp. 1128–1129, 2003.
    [16] T. E. Sale, D. Lancefield, B. Corbett, and J. Justice, “Ageing studies on red-emitting VCSELs for polymer optical fibre applications,” IEEE 19th International Semiconductor Laser Conference, Conference Digest 2004, pp. 75-76, 2004.
    [17] M. Linnik, A. Christou, “Group III-nitride based VCSEL for applications at the wavelength of 400nm,” Proc. Materials Research Society Symposium, v 639, pp. G6.42.1-G6.42.6, 2001.
    [18] http://www.logitech.com/index.cfm/products/features/optical/US/EN
    [19] H. K. Shin, and I. Kim, “Application of VCSEL to optical disk system,” Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, 1997, pp. 301-302, 1997.
    [20] K. Goto, and K. Kurihara, “High speed VCSEL array head for tera byte optical disk,” Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, v 4, pp. 1113-1114, 1999.
    [21] D. Vakhshoori, J. D. Wynn, G. J. Aydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett., vol. 62, pp.1448-1450, Mar., 1989.
    [22] G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes,” Appl. Phys. Lett., vol. 64, pp.542-544, Jan., 1994.
    [23] K. L. Lear, R. P. Schneider, Jr., K. D. Choquette, and S. P. Kilcoyne, “ Index guiding dependence effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 740-742, 1996.
    [24] C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, and K. J. Ebeling, “4.8 mW singlemode oxide confined topsurface emitting vertical-cavity laser diodes,” Electron. Lett., vol. 33, pp. 1790–1791, Oct., 1997.
    [25] D. Zhou, and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol.38, pp. 1599-1606, Dec., 2002.
    [26] H. J. Unold, S. W. Z. Mahmoud, R. Jäger, M. Grabherr, R. Michalzik, and K. J. Ebeling, “Large-area single-mode VCSELs and the self-aligned surface relief,” IEEE J. Select. Topics Quantum Electron., vol. 7, pp. 386–392, Mar./Apr., 2001.
    [27] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, and A. Larsson, “Single fundamental mode output power exceeding 6 mW from VCSEL’s with a shallow surface relief,” IEEE Photon. Technol. Lett., vol. 16, pp. 368–370, Feb., 2004.
    [28] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp.927-929, Sep., 2001.
    [29] S. Shinada and F. Koyama, “Single high-order transverse mode surface-emitting laser with controlled far-field pattern,” IEEE Photonic Technol. Lett., vol. 14, no. 12, pp. 1641-1643, Dec., 2002.
    [30] H. J. Unold, M. Golling, R. Michalzik, D. Supper and K. J. Ebeling, “Photonic Crystal Surface-Emitting Lasers: Tailoring waveguiding for single-mode emission,” Proc. 27th European Conf. on Opt. Commun., no. Th.A.1.4, vol. 4, pp. 520-521, Amsterdam, The Netherlands, Sept.-Oct. 2001.
    [31] A. J. Danner, T. S. Kim, and K. D. Choquette, “ Single fundamental mode photonic crystal vertical cavity laser with improved output power,” Electron. Lett., vol. 41, pp. 49-50, Mar, 2005.
    [32] A.J. Fischer, W. W. Chow, D. K. Serkland, A. A. Allerman, K.M. Geib, and K.D. Choquette, “Multi-section vertical-cavity laser diode for high power single-mode operation,” Proc. Conf. Lasers and Electro-Optics (CLEO), pp. 106, Baltimore, U.S.A, May, 2001.
    [33] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs–GaAs superlattice by impurity diffusion,” Appl. Phys. Lett., vol. 38, pp. 776–778, May, 1981.
    [34] P. D. Floyd and J. L. Merz, ”Optical properties of disordered GaAs/(Al,Ga)As distributed Bragg Reflectors,“ J. Appl. Phys., vol. 75, pp.7666-7668, Jun, 1994.
    [35] P. D. Floyd, M. G. Peters, L. A. Coldren, and J. L. Merz, “Suppression of higher-order transverse modes in vertical-cavity lasers by impurity-induced disordering,” IEEE Photon. Technol. Lett., vol. 7, pp. 1388-1390, Dec., 1995.
    [36] L. A. Coldren, and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” Wiley, New York, 1995.
    [37] P. D. Floyd and J. L. Merz, “Effects of impurity-free and impurity-induced disordering on the optical properties of GaAs/(Al,Ga)As distributed Bragg reflectors,” J. Appl. Phys., vol. 76, pp.5524-5527, Nov, 1994.
    [38] R. G. Hunsperger, “Integrated Optics: Theory and Technology, 3rd Ed.,” Springer-Verlag, pp. 77–78, 1992.
    [39] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, “Diffusion of zinc into Ga1-xAlxAs,” Appl. Phys. Lett., vol. 47, pp. 1193–1195, 1985.
    [40] C. C. Chen, S. J. Liaw, and Y. J. Yang, “Stable single-mode operation of an 850-nm VCSEL with a higher order mode absorber formed by shallow Zn diffusion,” IEEE Photon. Technol. Lett., vol. 13, pp.266-268, Apr., 2001.
    [41] 莊達人, ”VLSI製造技術,” 高立出版社 (1995)。
    [42] K. Tai, R. J. Fischer, K. W. Wang, S. N. G. Chu, and A. Y. Cho, “Use of implant isolation for fabrication of vertical-cavity surface-emitting laser diodes,” Electronics Lett., vol. 25, pp. 1644-1645, 1989.
    [43] M. Orenstein, A. C. Von Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett., vol. 56, pp. 2384–2386, 1990.
    [44] J. F. Ziegler, SRIM2003.17. http://www.srim.org/, 2003.
    [45] M. E. Warren, P. L. Gourley, G. R. Hadley, G. A. Vawter, T. M. Brennan, B. E. Hammons, and K. L. Lear, “On-axis far-field emission from two-dimensional phase-locked vertical cavity surface-emitting laser arrays with an integrated phase-corrector,” Appl. Phys. Lett., vol . 61, pp. 1484-1486, Sep., 1992.
    [46] D. G. Deppe, J. P. van der Ziel, Naresh Chand, G. J. Zydzik, and S. N. G. Chu, “Phase-coupled two-dimensional AlxGa1–xAs-GaAs vertical-cavity surface-emitting laser array,” Appl. Phys. Lett., vol. 56, pp.2089-2091, May., 1990.
    [47] L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, and A. P. Napartovich, “Near-diffraction-limited coherent emission from large aperture antiguided VCSEL arrays,” Appl. Phys. Lett., vol. 84, pp.320-322, Jan., 2004.
    [48] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T. Florez, and J. P. Harbison, “Transverse mode characteristics of vertical cavity surface emitting lasers,” Appl. Phys. Lett., vol. 57, pp. 218–220, 1990.
    [49] J. Lin, J. K. Gamelin, G. T. Du, S. Wang, M. Hong, and J. P. Mannaerts, “ Vertical microcavity surface-emitting ring laser,” Appl. Phys. Lett., vol. 60, pp. 2851-2852, Jun., 1992.
    [50] D. K. Serkland, K. D. Choquette, G. R. Hadley, K. M. Geib, and A. A. Allerman, “Two-element phased array of antiguided vertical-cavity lasers,” Appl. Phys. Lett., vol. 75 pp. 3754-3756, Dec., 1999.
    [51] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, pp. 5161-5163, Nov., 2004.
    [52] Jin-Wei Shi, C.-H. Jiang, K.-M. Chen, J.-L. Yen, and Y. J. Yang, “Single-mode vertical-cavity surface-emitting laser with ring-shaped light-emitting aperture,” to be published in Appl. Phys. Lett., Vol. 87, July, 2005.
    [53] J. L. Yen (顏嘉良), The study of magnesium diffusion in GaN, PhD thesis, National Taiwan University, Taipei, Department of electrical engineering, Chapter 3, 2004.
    [54] G. T. Dang, R. Mehandru, B. Luo, F. Ren, W. S. Hobson, J. Lopata, M. Tayahi, S. N. G. Chu, S. J. Pearton, W. Chang, and H. Shen, “Fabrication and characteristics of high-speed implant-confined index-guided lateral-current 850-nm vertical cavity surface-emitting lasers,” J. Lightwave Technol., vol. 21, pp. 1020-1031, Apr., 2003.
    [55] M. Grabherr, R. Jager, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide-confined GaAs VCSEL’s emitting in the 850-nm wavelength regime,” IEEE Photon. Technol. Lett., vol. 9, pp. 1304–1306, Oct., 1997.

    QR CODE
    :::