| 研究生: |
呂榮峰 Reng-Fen Lu |
|---|---|
| 論文名稱: |
BaTiO3填充床電漿反應器破壞CF4之初步研究 CF4 Abatement by Packed Bed Plasma Reactors |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 四氟甲烷 、全氟化物 、電漿 、填充床 、鈦酸鋇 |
| 外文關鍵詞: | CF4, PFCs, Plasma, Packed Bed, BaTiO3 |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳氟化物(PFCs, Perfluorinated Compounds)為全球溫暖化潛勢極高之氣體,且存活於大氣中之時間達千年以上,因此對於可能造成之地球溫暖化問題逐漸受到重視;而為有效控制日益嚴重之全球溫暖化現象,於1997年12月日本京都所召開的溫室效應氣體管制會議中,便將包括PFCs及CO2、CH4、HPFCs、N2O等氣體列為管制項目。PFCs的排放控制方式除了提高製程中之利用率外,尚可採用替代化學物、回收再利用和破壞削減等方法;而相較於替代化學物開發的不易、回收再利用的高成本,破壞削減是現階段控制PFCs之主要方法。本研究嘗試以實驗室規模之填充床式電漿反應系統,針對PFCs中最為穩定之物種CF4,進行非熱電漿處理,並藉由反應氣體組成、反應器形式(平行板式反應器及線管式反應器)、供電電壓及供電頻率等重要參數之控制,探討填充床式電漿技術對CF4轉化率、產物分佈及生成量的影響,並初步評估放電系統的能量利用效率,以提供未來實廠化操作之參考。配合半導體製程本研究中實驗設計之氣體組成為:CF4=500 ppm、Ar=4,000 ppm、O2=20%以及N2為balance,氣體總流量為300 sccm,於初步測試中瞭解Ar濃度的提高將有助於CF4之轉化效率,因此後續實驗中將Ar視為一添加氣體,提升其濃度至40%。實驗結果顯示平行板式反應器各操作參數(電極間距、電場分佈、施加電壓及輸入能量)間關係複雜,各參數間的變化彼此關連相繫,對於轉化CF4效率最佳操作點為電極間距落於1.4~2.0 cm間,其去除CF4之最佳效率可達33.5%,配合添加劑乙烯則可提高至42.6%;於線管式反應器中,發現增加填充BaTiO3之長度具有較佳之CF4轉化效率,且由於線管式反應器之放電能量較高,使得CF4之去除率可達48%,當添加劑乙烯加入系統中時則可提升至66.6%。就生成物之分布而言,CF4轉化反應之主要生成產物以CO2、COF2及CO為主,本研究已證實藉由BaTiO3填充床電漿反應器配合碳氫化合物添加劑(C2H2及C2H4)破壞CF4之技術深具發展潛力。
Chang J. S., Yamamoto Toshiaki, “Removal of NF3 from Semiconductor Process Flue Gases by Tandem Packed-Bed Plasma and Adsorbent Hybrid Systems,” IEEE Transactions on Industry Applications, 36 (5), 1251 (2000).
Chang J. S., Takaki K., Kawasaki T., Kostov K., Ohkubo T., Kanazawa S. and Nomoto T., “Modeling of Ferro-Electric Packed Bed Non-Thermal Plasma Reactor for Pollution Gas Treatments”, Second Asia-Pacific International Symposium of the Basis and Application of Plasma Technology, Kaohsiung, Taiwan (2001).
Chang M. B. and Yu S. J., “An Atmospheric-Pressure Plasma Process for C2F6 Removal”, Environmental Science & Technology, 35, 1587 (2001).
Chapman B., “Glow Discharge Processes”, A Wiley-Interscience Publication, Canada, 297 (1980).
Dorai R., “Modeling of Plasma Remediation of NOx Using Global Kinetic Models Accounting for Hydrocarbons”, Thesis for the Degree of Master of Science in Chemical Engineering, University of Illinois at Urbana-Champaign (2000).
Dufaux D. P. and Zachariah M. R., “Aerosol Mineralization of Chlorofluorocarbons by Sodium Vapor Reduction”, Environmental Science & Technology, 31, 2223 (1997).
Fiala A., Kiehlbauch M., Mahnovski S., and Graves D. B., “Model of Point-of-Use Plasma Abatement of Perfluorinated Compounds with an Inductively Coupled Plasma”, Journal of Applied Physics, 86, 152 (1999).
Flippo B. G. and Jones R. F., “Abatement of Fluorine Emissions Utilizing an ATMI CDO Model 863 with Steam Injection”, Journal of the Semiconductor Safety Association, 1 (2001).
Fujimi 281, Fujimi Machi, Suwa Gun and Nagano Ken, “PFC Emissions Reductions in the Semiconductor Operations Division at Seiko Epson Corporation”, ISESH 8th Annual Conference, Kenting, Taiwan (2001).
Halliday D. and Resnick R., “Fundamentals of Physics”, Second Edition, A Wiley-Interscience Publication, New York (1988).
Hartz C. L., Bevaan J. W., Jackson M. W., and Wofford B. A., “Innovative Surface Wave Plasmas Reactor Technique for PFC Abatement”, Environmental Science & Technology, 32, 682 (1998).
Hitachi S. T. and Hitachi S. k., “Catalytic Decomposition of PFC”, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas (1998).
Hung M. C., Yang C. L., Wu P. H., Pan S. M. and Huang Y. S., “Reduction of NF3 Usage for Optimal AMAT HDP Clean Recipe”, ISESH 8th Annual Conference, Kenting, Taiwan (2001).
Huxley L. G. H. and Crompton R. W., “The Diffusion and Drift of Electrons in Gases”, A Wiley-Interscience Publication, New York (1974).
Ibuka S., Japan’s Use of ClF3, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas (1998).
Karecki S. M., Pruette L. C., and Reif R., “Reduction of Global Warming Emissions in a Dielectric Etch Application through Use of Iodofluorocarbon”, A Partnership for PFC Emissions Reductions, Technical Present, Texas (1998).
Levy R. A., Zaitsev V. B., Aryusook K., Ravindranath C., Sigal V., Misra A., Kesari S., Rufin D., Sees J., and Hall L., “Investigation of CF3I as an Environmental Benign Dielectric Etchant”, Journal of Materials Research, 13 (9), 2643 (1998).
Liao M. Y., Wong K., McVittie J. P., and Saraswat K. C., “Abatement of Perfluorocarbons with an Inductively Coupled Plasma Reactor,” Journal of Vacuum Science & Technology, B17 (6), 2638 (1999).
Mendicino L., “Evaluation of Applied Materials DxZ Remote Clean TM Technology”, TT Document # 99113842A-ENG (1999).
Mohindra V., Chae H., Sawin H. H., and Mocella M. T., “Abatement of Perfluorocompounds (PFCs) in a Microwave Tubular Rreactor Using O2 as an Additive Gas”, IEEE Transactions on Semiconductor Manufacturing, 10, 399 (1997).
Nunez C.M., Ramsey G.H. and Abbott J.H., "Corona Destruction: An Innovative Control Technology for VOCs and Air Toxics", Journal of the Air & Waste Management Association, 43, 242 (1993).
Pruette L. C., Karecki S. M., and Reif R., “Evaluation of Trifluoroacetic Anhydride as an Alternative Plasma Enhanced Chemical Vapor Deposition Chamber Clean Chemistry”, Journal of Vaccum Science & Technology, A16 (3), 1577 (1998).
Raizer Y. P., Allen J. E. and Kisin V. I., “Gas Dsicharge Physics”, ISBN: 3-540-19462-2 Springer-Verlag Berlin Heidelberg Present, Texas (1991).
Sawin H. H. and Vitale S. A., 51st Gaseous Electronics Conference, Mauim, Hawaii (1998).
Seeley A., Chandler P., Cottle S., and Mawle P., “Effective PFC Gas Abatement in a Production Environment”, Semiconductor Fabtech-10th Edition, BOC Edwards Exhaust Management Systems, Nailsea, UK (1997).
Timms P. L., “The Chemistry of Volatile Waste from Silicon Wafer Processing”, Journal of the Chemical Society Dalton Transactions, 815 (1999).
Worth W. F., “Reducing PFC Emissions: A Tech Update”, Future Fab International, Environmental/ Health and Safety, 57 (2000).
Xu X., “Dynamics of High- and Low-Pressure Plasma Remediation”, Thesis for the Degree of Doctor of Science of Philosophy in Electrical Engineering, University of Illinois at Urbana-Champaign (2000).
Xu X., Rauf S., and Kushner M. J., “Plasma Abatement of Perfluorocompounds in Inductively Coupled Plasma Reactors”, Journal of Vaccum Science & Technology A: Vaccum, Surfaces and Films, 18 (1), 213 (2000).
Yamamoto T., Chang J. S., Kostov K., Okayasu Y., Kato T., Iwaizumi T., and Yoshimura K., “NF3 Treatment by Ferroelectric Packed-Bed Plasma Reactor,” Journal of Advanced Oxidation Technology, 4 (4), 454 (1999).
Yu S. J. and Chang M. B., “Oxidative Conversion of PFC via Processing with Dielectric Barrier Discharges”, Plasma Chemistry and Plasma Processing, 21 (3), 311 (2001).
林敬二、楊美惠、楊寶旺、廖德章及薛敬和,化學大辭典,高立圖書有限公司出版,民國82年。
楊登任,以觸媒輔助介電質放電技術添加氫氣轉化二氧化碳之初步研究,國立中央大學環境工程研究所碩士論文,民國88年。
游生任,以介電質放電技術轉化四氟乙烷及六氟乙烷之初步研究,國立中央大學環境工程研究所碩士論文,民國89年。
周崇光,“積體電路製程尾氣控制技術之應用與發展”,2000產業環保工程實務技術研討會,民國89年11月。
鄭昆山,能源政策與產業結構之法制調整,國科會/環保署NSC88-EPA-Z-029-001,民國88年。
余榮彬,半導體工業全氟化物排放控制技術與機會,TSIA專題報導摘選,民國88年4月。下載於:http://www.tsia.org.tw/cnewletter9.htm.