跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾柏憲
Bo-Shian Tzeng
論文名稱: 二氧化鉿電阻式記憶體之微縮特性研究
The research of scaling down in HfO2 RRAM
指導教授: 周正堂
Cheng-Tung Chou
李耀仁
Yao-Jen Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 二氧化鉿微縮電阻式記憶體
外文關鍵詞: oxygen vacancy, scaling down, filament, RRAM, HfO2
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電阻式記憶體(RRAM)可以說是目前最簡單結構的記憶體,而由於結構簡單所以非常適合用來微縮。再配合原有的非揮發性、快速存取能力、低耗能、低成本、保存資料能力佳的優勢,使得在未來新時代記憶體中備受矚目。如果再使用3D結構來增加密度,那電阻式記憶體在發展高密度元件有著非常強大的潛力。
    而為了探討電阻式記憶體的微縮性,本實驗利用Ni/HfO2/Si的Contact hole以及Crossbar的結構,並使用不同的電極大小來微縮,而發現在這些結構中在小尺寸都會有Forming fail以及Reset fail的現象,但也了解使用比較薄的介電層由於降低Vforming可以有效的提升元件的可靠度,也了解到機台限流其實並不可靠,由於機台本身的限制,會有overshoot current,為了避免此現象一定要用1D1R或1T1R的結構才可避免。另外在記憶體中發現可以藉由限流來分離氧空缺燈絲(OF)以及金屬燈絲(MF),而在使用氧空缺的燈絲時,會具有低功率操作的特性,再配合不同的電極,可以讓原本會出現DBIE現象的元件可以順利微縮。


    Resistance Random Access Memory (RRAM) is the most simplified structure of memory, and it can be easily scaled down. RRAM has many advantages such as non-volatile property, high speed operation, low power consumption, low cost, and high data density. RRAM is the best candidate for high density device in the next generation.
    In this study, we used Ni/HfO2/Si as contact hole and crossbar structure, and used different electrode sizes to scale down. But it showed “forming fail” and “reset fail” in tiny scale. Nevertheless, using thicker TMO can reduce Vforming and enhance reliability in the device. At the same time, we also realized that the instrumental compliance was not fully dependable, so it had overshoot current which could damage the device. We must use 1D1R or 1T1R structure to avoid the overshoot current. Besides, the device can use different compliance to separate the oxygen filament (OF) and metal filament (MF). When using the OF mode with different top electrode materials, it had lower power consumption. So we can reduce “forming fail” and “reset fail” probability.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 viii 表目錄 xii 第一章、緒論 1 1-1前言 1 1-2研究動機 2 第二章、簡介及文獻回顧 3 2-1記憶體簡介 3 2-1-1磁阻式記憶體(MRAM) 4 2-1-2鐵電記憶體(FeRAM) 5 2-1-3相變化記憶體(PCRAM) 6 2-1-4電阻式記憶體(RRAM) 7 2-2電阻式記憶體轉換現象與量測方式 8 2-2-1電阻轉換現象 8 2-2-2電阻式記憶體量測種類 10 2-3電阻轉換現象機制 13 2-3-1金屬離子的電化學效應(Electrochemical metallization effect) 14 2-3-2價電子轉換效應(Valance change effect) 16 2-3-3熱化學效應(Thermalchemical effect) 17 第三章、實驗儀器介紹 28 3-1清洗製程 28 3-1-1 Wet bench 28 3-2黃光製程 29 3-2-1自動化光阻塗佈及顯影系統(Track) 29 3-2-2光學步進機( Canon FPA-3000i5+ Stepper) 29 3-2-3 Lift-off製程 30 3-3蝕刻製程 30 3-3-1 TCP 9400SE (9400) 30 3-3-2 Mattson 31 3-4薄膜製程 31 3-4-1水平爐管 31 3-4-2垂直爐管 32 3-4-3 MOCVD(Metal-Organic Chemical Vapor Deposition) 32 3-4-4 ALDCVD (Atomic Layer Deposition) 33 3-4-5 Sputter B 33 3-5材料分析儀器 33 3-5-1 熱場發射掃描式電子顯微鏡(TF-SEM) 33 3-5-2 場發射穿透式電子顯微鏡(TEM) 34 3-6電性量測機台 35 3-6-1 IV&CV電性量測系統 35 第四章、Ni/HfO2/Si 微縮實驗 40 4-1實驗前言 40 4-2實驗流程 40 4-2-1 Contact hole製程介紹 40 4-2-2 Crossbar製程介紹 42 4-3 Forming fail 43 4-3-1 現象與觀察 43 4-3-2 物性分析討論 43 4-3-3 電性分析討論 44 4-4 Reset fail 47 4-4-1 現象與觀察 47 4-4-2 電性分析討論 48 4-4-3 物性分析討論 49 4-5 小尺寸元件綜合比較分析 50 4-6結果與討論 51 第五章、氧空缺燈絲操作的理論探討 74 5-1氧空缺燈絲介紹 74 5-2電性量測 75 5-3使用氧空缺模式改善微縮實驗 78 第六章、結論 85 6-1 Contact hole微縮部分 85 6-2 Crossbar微縮部分 85 6-3使用氧空缺燈絲來進行微縮部分 86 第七章、Future work 87 參考文獻 88

    [1] Y. Nishi, "Challenges and opportunities for future non-volatile memory technology", Current Applied Physics, vol. 11, pp. E101-E103, Mar 2011.
    [2] J.-M. Sallese, "Principles of the 1T Dynamic Access Memory Concept on SOI", MOS Modeling and Parameter Extraction Group Meeting, 2007.
    [3] 余昭倫, "綜觀新時代記憶體-相變化記憶體," 2006.
    [4] 葉林秀、李佳謀、徐明豐等, "磁阻式隨機存取記憶體技術的發展─現在與未來," 物理雙月刊 廿六卷四期, 2004.
    [5] 呂正傑、詹世雄, "鐵電記憶體簡介," NDL 奈米通訊, vol. 第五卷第四期.
    [6] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges", Advanced Materials, vol. 21, pp. 2632-+, Jul 13 2009.
    [7] J. Van Houdt, "Charge-based nonvolatile memory: Near the end of the roadmap? ", Current Applied Physics, vol. 11, pp. e21-e24, 2011.
    [8] B. Gao, L. Liu, X. Liu, and J. Kang, "Resistive switching characteristics in HfOx layer by using current sweep mode", Microelectronic Engineering, vol. 94, pp. 14-17, 2012.
    [9] B. Chen, B. Gao, S. W. Sheng, L. F. Liu, X. Y. Liu, Y. S. Chen, Y. Wang, R. Q. Han, B. Yu, and J. F. Kang ",A Novel Operation Scheme for Oxide-Based Resistive-Switching Memory Devices to Achieve Controlled Switching Behaviors," Electron Device Letters, IEEE, vol. 32, pp. 282-284, 2011.
    [10] R. Waser and M. Aono, "Nanoionics-based resistive switching memories", Nat Mater, vol. 6, pp. 833-840, 2007.
    [11] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M. J. Tsai, "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity", in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
    [12] Y. Hirose and H. Hirose, "Polarity-Dependent Memory Switching and Behavior of Ag Dendrite in Ag-Photodoped Amorphous As2S3 Films", Journal of Applied Physics, vol. 47, pp. 2767-2772, 1976.
    [13] N. Raghavan, K. L. Pey, W. Liu, X. Wu, X. Li, and M. Bosman, "Evidence for compliance controlled oxygen vacancy and metal filament based resistive switching mechanisms in RRAM", Microelectronic Engineering, vol. 88, pp. 1124-1128, 2011.
    [14] R. Bez and A. Pirovano, "Non-volatile memory technologies: emerging concepts and new materials", Materials Science in Semiconductor Processing, vol. 7, pp. 349-355, Aug-Dec 2004.
    [15] T. Baiatu, R. Waser, and K.-H. Härdtl, "dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism", Journal of the American Ceramic Society, vol. 73, pp. 1663-1673, 1990.
    [16] J. Park, S. Jung, J. Lee, W. Lee, S. Kim, J. Shin, and H. Hwang, "Resistive switching characteristics of ultra-thin TiOx", Microelectronic Engineering, vol. 88, pp. 1136-1139, 2011.
    [17] R. Hallock, "The hows and whys of SSDs", tech-articles, 2008
    [18] M. J. Lee, C. B. Lee, S. Kim, H. Yin, J. Park, S. E. Ahn, B. S. Kang, K. H. Kim, G. Stefanovich, I. Song, S. W. Kim, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, C. J. Kim, and Y. Park, "Stack Friendly All-Oxide 3D RRAM using GaInZnO Peripheral TFT realized over Glass Substrates", Ieee International Electron Devices Meeting 2008, Technical Digest, pp. 85-88, 2008.
    [19] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM", in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
    [20] V. Jousseaume, A. Fantini, J. F. Nodin, C. Guedj, A. Persico, J. Buckley, S. Tirano, P. Lorenzi, R. Vignon, H. Feldis, S. Minoret, H. Grampeix, A. Roule, S. Favier, E. Martinez, P. Calka, N. Rochat, G. Auvert, J. P. Barnes, P. Gonon, C. Vallée, L. Perniola, and B. De Salvo, "Comparative study of non-polar switching behaviors of NiO- and HfO2-based oxide resistive-RAMs", Solid-State Electronics, vol. 58, pp. 62-67, 2011.
    [21] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, "Reproducible switching effect in thin oxide films for memory applications", Applied Physics Letters, vol. 77, pp. 139-141, 2000.
    [22] R. Waser, "Resistive non-volatile memory devices ", Microelectronic Engineering, vol. 86, pp. 1925-1928, 2009.
    [23] 柯志忠, "以原子層沉積製程成長氧化物薄膜與金屬奈米顆粒及其應用"
    [24] K. L. Pey, C. H. Tung, M. K. Radhakrishnan, L. J. Tang, and W. H. Lin, "Dielectric breakdown induced epitaxy in ultrathin gate oxide - a reliability concern", in Electron Devices Meeting, 2002. IEDM ''02. International, 2002, pp. 163-166.
    [25] C. H. Tung, K. L. Pey, W. H. Lin, and M. K. Radhakrishnan, "Polarity-dependent dielectric breakdown-induced epitaxy (DBIE) in Si MOSFETs", Electron Device Letters, IEEE, vol. 23, pp. 526-528, 2002.
    [26] H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, "Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach", Applied Physics Letters, vol. 98, pp. 042105-042105-3, 2011.
    [27] B. Gao, H. W. Zhang, S. Yu, B. Sun, L. F. Liu, X. Y. Liu, Y. Wang, R. Q. Han, J. F. Kang, B. Yu, and Y. Y. Wang, "Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology", in VLSI Technology, 2009 Symposium on, 2009, pp. 30-31.
    [28] T. A. L. Selvarajoo, R. Ranjan, P. Kin-Leong, T. Lei-Jun, T. Chih Hang, and L. Wenhe, "Dielectric-breakdown-induced epitaxy: a universal breakdown defect in ultrathin gate dielectrics", Device and Materials Reliability, IEEE Transactions on, vol. 5, pp. 190-197, 2005.
    [29] L. Goux, J. G. Lisoni, W. Xin Peng, M. Jurczak, and D. J. Wouters, "Optimized Ni Oxidation in 80-nm Contact Holes for Integration of Forming-Free and Low-Power Ni/NiO/Ni Memory Cells", Electron Devices, IEEE Transactions on, vol. 56, pp. 2363-2368, 2009.
    [30] H. ChiaHua, H. Cho-Lun, C. Chun-Chi, L. Jan-Tsai, W. Cheng-San, H. Chien-Chao, H. Chenming, and Y. Fu-Liang, "9nm half-pitch functional resistive memory cell with A programming current using thermally oxidized sub-stoichiometric WOx film", in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 19.1.1-19.1.4.
    [31] T. Yuan Heng, H. Chia-En, C. H. Kuo, Y. D. Chih, and L. Chrong Jung, "High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits", in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
    [32] D. S. Jeong, H. Schroeder, and R. Waser, "Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt/TiO2/Pt Stack", Electrochemical and Solid-State Letters, vol. 10, pp. G51-G53, 2007.
    [33] S. Lee, H. Kim, J. Park, and K. Yong, "Coexistence of unipolar and bipolar resistive switching characteristics in ZnO thin films", Journal of Applied Physics, vol. 108, pp. 076101-3, 2010.
    [34] K.-L. Lin, T.-H. Hou, J. Shieh, J.-H. Lin, C.-T. Chou, and Y.-J. Lee, "Electrode dependence of filament formation in HfO2 resistive-switching memory", Journal of Applied Physics, vol. 109, pp. 084104-7, 2011.
    [35] T.-H. Hou, K.-L. Lin, J. Shieh, J.-H. Lin, C.-T. Chou, and Y.-J. Lee, "Evolution of RESET current and filament morphology in low-power HfO2 unipolar resistive switching memory", Applied Physics Letters, vol. 98, pp. 103511-103511-3, 2011.

    QR CODE
    :::