跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝政熹
Cheng-Si Hsieh
論文名稱: 體積全像用於球面波分波多工的波長與空間的選擇性之研究
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 92
語文別: 中文
論文頁數: 105
中文關鍵詞: 球面波體積全像波長多工
外文關鍵詞: Volume Hologram, Wavelength Multiplexing, Spherical Wave
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 體積全像對波長與空間的敏感性,在國際間已有相當的研究成果,但多屬使用平面波作為參考光或訊號光的研究,而球面波在改變相位上較平面波具有更高的靈活性,運用在各式多工及儲存元件上將可以有更長足而多變的設計,因此本論文的目的在於以發散球面波及收斂球面波相互干涉所建立的體積全像,利用相位疊加法分析其在空間與時間維度上的特性。
    論文的內容主要共分三大部分:
    (一) 分析改變體積全像紀錄介質的體積,對波長檢選度及繞射光的影響。
    (二) 分析發散球面波參考光的三維位移,對於繞射光在空間上及波長偏移的影響。
    (三) 利用相位疊加法設計的高密度體積全像濾波器。


    摘要 I 目錄 II 圖索引 V 表索引 X 第一章 緒論 1 1.1 引言 1 1.2 簡述全像術 2 1.3 布拉格條件 4 1.4 相位疊加法(VOHIL) 7 第二章 系統的建立 12 2.1 計算模型 12 2.2 折射率的影響 16 2.3 參數的設定 19 2.3.1 取樣法與取樣點數 20 2.3.2 全像紀錄介質 22 2.3.3 球面波 26 2.3.4 近軸條件近似 28 第三章 改變記錄介質體積的影響 31 3.1 改變記錄介質的截面寬度 32 3.1.1 空間維度的分析 34 3.1.2 時間維度的分析 35 3.2 改變記錄介質的縱向長度 36 3.2.1 空間維度的分析 36 3.2.2 時間維度的分析 38 3.3 結果討論 42 3.3.1 改變記錄介質的截面寬度 42 3.3.2 改變記錄介質的縱向長度 42 第四章 探測光位移的影響 43 4.1 橫向偏移(Lateral Shift) 44 4.1.1 X向偏移 45 4.1.1.1 空間維度分析 45 4.1.1.2 時間維度分析 50 4.1.2 Y向偏移 55 4.1.2.1 空間維度分析 58 4.1.2.2 時間維度分析 62 4.2 縱向偏移(Longitudinal Shift) 62 4.2.1 空間維度分析 62 4.2.2 時間維度分析 70 4.3 結果討論 75 4.3.1 探測光X向偏移 75 4.3.2 探測光Y向偏移 75 4.3.3 探測光Z向偏移 76 第五章 分波多工的應用 77 5.1 光纖通訊簡介 77 5.2 體積全像濾波器 78 5.2.1 研究方法 80 5.2.2 特性分析 82 5.2.3 結果討論 88 第六章 結論 89 參考文獻 92

    [1] D. Gabor, “A new Microscopic principle,” Nature 161, 777(1948).
    [2] P. J. Van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400(1963).
    [3] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, ’’Holographic data storage in three-dimensional media,“ Appl. Opt. 5, 1303-1311(1966).
    [4] D. Gabor, and G. W. Stroke, “The Theory of Deep Holograms,” Proc. Royal Soc. Of London, A. 304, 275-289(1968).
    [5] C. Gu, J. Hong, I. McMichael, and R. Saxena, “Cross-talk-limited storage capacity of volume holograpgic memory,” J. Opt. Soc. Am. 9, 1978-1983(1992)
    [6] H. Kogelnik, “Coupled Wave Theory for Thick Hologram Grating,” Bell Sys. Technol. J. 48, 2909-2947(1969).
    [7] P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley, New York, 1993.
    [8] C. C. Sun, “A Simplified Model for Diffraction Analysis of Volume Holograms,” Optical Engineering (Letters) 42, 1184-1185 (2003).
    [9] W. R. Klein, “Theoretical Efficiency of Bragg Devices,” Proc. IEEE 54, 803(1966).
    [10] A. Yariv, P. Yeh, Optical Waves in Crystals, Wiley, New York, 1984.
    [11] B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commum. 175, 67-74(2000).
    [12] C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260(2001).
    [13] C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y. Chang, ” A novel algorithm for high sensitivity in measuring surface variation based on volume holography,” Microwave Opt. Technol. Lett. 34, 319-321(2002).
    [14] C. C. Sun, S. P. Yeh, Y. N. Lin, W. C. Su, and Y. Ouyang,” High longitudinal selectivity of shifting multiplexing in volume hologram,” Opt. Laser Technol. 34, 523-526(2002).
    [15] C.C Sun, W. C. Su, Y. N. Lin, Y. Ouyang, S. P. The, and B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical reference waves,” Opt. Mem. Neural Net Works, 8, 229-236(1999).
    [16] E. Hecht, Optics, 3rd ed., Addison Wesley Longman, New York, 1998.
    [17] M. V. Hobdem and J. Warner, ”The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243-244(1966).
    [18] G. P. Agrawal, Fiber-Optic Communication System, John Wiley & Sons, New York, 1997.
    [19] O. Beyer, I. Nee, F. Havermeyer, and K. Buse, “Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized(methyl methacrylate),” Appl. Opt. 42, 2003.
    [20] Maria Chiara Ubaldi, Pierpalol Boffi, David Piccinin, Claudio Frascolla, and Mario Martinelli, “Volume holography for 1550 nm digitaldatabases,” Proc. SPIE 4089, 625-629, Optics in Computing 2000, Roger A. Lessard; Tigran V. Galstian; Eds.
    [21] M.P. Petrov, A.V. Shamray, V. M. Petrov, and J. Sanchez Mondragon, ” Electric field selectivity of refraction volume holograms in LiNbO3,” Opt. Commum. 153, 305-308(1998).

    QR CODE
    :::