跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥霖
Yen-Lin Chen
論文名稱: 新型散射元件全場域光場量測之研究
A novel technique for measurement of whole field optical distribution of scattering component
指導教授: 孫慶成
Ching - Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 照明與顯示科技研究所
Graduate Institute of Lighting and Display Science
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: 散射片散射雙向散射分佈函數雙向穿透分佈函數雙向反射分佈函數
外文關鍵詞: BSDF, BTDF, BRDF, scattering
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們提出新穎之 BSDF 量測系統,為了達到最終之二維 BSDF 量測資料,我們先嘗試既有之錐光量測系統,鑑於數值孔徑上的限制,遂提出平面成像量測系統並逐步改良至全域成像量測系統。最後,利用全域成像量測系統,可以量測出散射片之穿透散射光角度分佈與反射散射光角度分佈,並且利用一維散角量測系統的實驗結果驗證了全域成像量測系統之準確性。


    In this thesis, we propose novel systems for BSDF measurement. In order to obtain the 2-D BSDF measurement data, we try to use the conoscopic system. The conoscopic system has restriction on the numerical aperture, so we propose a planar imaging measurement system and improve it to whole field imaging measurement system. The whole field imaging measurement system can measure both the transmittance scattering distribution and reflectance scattering distribution for different kinds of diffusers. Finally, we use 1-D measurement result to prove its reliability.

    摘要 I Abstract II 致謝 III 目錄 V 圖索引 IX 表索引 XV 第一章 緖論 1 1-1散射學發展 1 1-2研究動機與目的 2 1-3論文大綱 3 第二章 原理介紹 5 2-1輻射學(Radiometry) 5 2-1-1 Cosine-third law 11 2-1-2 Cosine-fourth law 12 2-2光的散射行為 13 2-3雙向散射分佈函數(Bidirectional scattering distribution function) 15 第三章 光學散射元件之一維散角量測系統 17 3-1一維散角量測架構說明 17 3-2一維散角之光斑解決方法 19 3-3不同散射片之實驗量測結果 19 3-3結論 21 第四章 錐光(Conoscopic)量測系統 23 4-1錐光量測系統之原理 23 4-2錐光量測系統之架構 24 4-2-1 CMOS 影像中的像素(Pixel)位置與散射光角度之對應關係 25 4-2-2 灰階值與能量之關係的實驗架構與量測方法 28 4-2-3 波長為632.8 nm時之不同曝光時間的灰階值與能量之關係 29 4-2-4 不同曝光時間之影像疊加方法 32 4-3不同入射角度下之 Sample_1量測結果 33 4-4一維散角量測結果驗證錐光量測系統量測結果 36 4-5結論 38 第五章 平面成像量測系統 39 5-1平面成像量測系統之原理 39 5-2平面成像量測系統之影像校正 42 5-2-1相機CMOS 上之影像能量修正 42 5-2-2 相機 CMOS 上影像之座標轉換 44 5-2-3 波長為532 nm 時之灰階值與能量相對關係 46 5-3平面成像量測系統之實驗架構 48 5-4不同入射角度的實驗結果 53 5-5利用一維的量測結果驗證二維的量測結果 54 5-6結論 56 第六章 全域成像量測系統 57 6-1全域成像量測系統之實驗方法 57 6-2全域成像量測系統之架構 58 6-2-1 全域成像量測系統之影像強度修正 61 6-3不同方位之影像結合方法 62 6-4利用一維的量測結果驗證二維的量測結果 69 6-5結論 72 第七章 結論 73 參考文獻 74 中英文名詞對照表 77

    [1]J. C. Stover, Optical scattering measurement and analysis (McGraw-Hill, New York , Inc., 1990).
    [2]A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533-535 (1981).
    [3]H. C. van de Hulst, Light scattering by small particles (Dover, New York, 1981).
    [4]P. S. Heckbert, “Simulating global illumination using adaptive meshing,” Ph.D thesis, University of California, Berkeley (1991).
    [5]F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767 (1965).
    [6]LEDinside, http://www.ledinside.com.tw/.
    [7]C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16, 18692-18701 (2008).
    [8]A. J. W. Whang, Y. Y. Chen, and Y. T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Display Technol. 5, 94-103 (2009).
    [9]Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with hign luminance/illuminance ratio,” Opt. Express 18, 22020-22031 (2010).
    [10]F. Chen, K. Wang, Z. Qin, D. Wu, X. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926-20938 (2010).
    [11]S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19, A716-A724 (2011).
    [12]Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Display Technol. 7, 84-89 (2011).
    [13]T. Sales, S. Chakmakjian, D. J. Schertler, and G. M. Morris, “Microlens diffusers and beam shapers for light-emitting diode (LED) sources,” in Diffractive Optics and Micro-Optics, OSA Technical Digest (Optical Society of America, 2004), paper DTuA3.
    [14]M. Parikka, T. Kaikuranta, P. Laakkonen, J. Lautanen, J. Tervo, M. Honkanen, M. Kuittinen, and J. Turunen, “Deterministic diffractive diffusers for displays,” Appl. Opt. 40, 2239-2246 (2001).
    [15]A. Tagaya, M. Nagai, Y. Koike, and K. Yokoyama, “Thin liquid-crystal display backlight system with highly scattering optical transmission polymers,” Appl. Opt. 40, 6274-6280 (2001).
    [16]S. L. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31, 3016-3018 (2006).
    [17]G. Park, Y. G. Kim, J. H. Yi, and J. H. Kwon, “Enhancement of the optical performance by optimization of optical sheets in direct-illumination LCD backlight,” J. Opt. Soc. Korea 13, 152-157 (2009).
    [18]S. H. Baik, S. K. Hwang, Y. G. Kim, G. Park, and J. H. Kwon, “Simulation and fabrication of the cone sheet for LCD backlight application,” J. Opt. Soc. Korea 4, 478-483 (2009).
    [19]M. A. Greiner, B. D. Duncan, and M. P. Dierking, “Bidirectional scattering distribution functions of maple and cottonwood leaves,” Appl. Opt. 46, 6485-6494 (2007).
    [20]F. B. Leloup, S. Forment, P. Dutré, M. R. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47, 5454-5467 (2008).
    [21]H. Kostal, D. Kreysar, and R. Rykowski, “Application of imaging sphere for BSDF measurements of arbitrary materials,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FMJ6.
    [22]C. Qi, H. Liu, Y. Wei, and J. Dai, “Design and experimental research of angle self-compensation setup for BSDF measurement,” Chin. Opt. Lett. 7, 403-406 (2009).
    [23]宇晟光學股份有限公司, http://www.uotek.com.tw/ec99/.
    [24]V. N. Mahajan, Optical Imaging and Aberrations, Part Ι Ray Geometrical Optics (SPIE PRESS, Washington, 1998).
    [25]J. M. Palmer, Barbara Geri Grant, The art of radiometry (SPIE, Bellingham, 2009).
    [26]P. Beckmann and A. Spizzichino, The scattering of electromagnetic waves from rough surfaces (Pergamon, London, 1963).
    [27]J. A. Ogilvy, “Wave scattering from rough surface,” Rep. Prog. Phys. 50, 1553-1608 (1987).
    [28]T. R. Thomas, Rough surface (Longman, London, 1982).
    [29]J. A. Ogilvy and J. R. Foster, “Rough surfaces: gaussian or exponential statistics?,” J. Phys. D: App;. Phys. 22, 1243-1251 (1989).
    [30]F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometric Considerations and Nomenclature for Reflectance (U.S. Dept. Commerce, Washington, D.C., NBS Monograp 160, 1977).
    [31]Commission International de l’Eclairage, Radiometric and photometric characteristics of materials and their measurement, 2nd Edition (CIE 38(TC-2.3), Paris, 1977).
    [32]M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, Volume Ⅱ (McGraw-Hill, New York, 1911).
    [33]馬仕信,光學散射元件的設計與應用之研究,國立中央大學光電所博士論文,中華民國九十六年。
    [34]謝志鐸,光學擴散板光學模型之研究,國立中央大學光電所碩士論文,中華民國九十七年。
    [35]W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572-7577 (2007).
    [36]I. Moreno and C. C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16, 1808-1819 (2008).
    [37]M. E. Becker, “Display Reflectance: Basics, measurement, and rating,” J. SID 14, 1003-1017 (2006).
    [38]洪健翔,應用於照明系統之光度學量測與模擬方法,國立交通大學光電所,中華民國九十九年。

    QR CODE
    :::