| 研究生: |
黃育立 Yu-Lih, Huang |
|---|---|
| 論文名稱: |
使用分子模擬研究鎳基奈米析出強化合金的塑性變形 Molecular Dynamics Study for Plastic Deformation of the Nano- Precipitate Strengthened Ni-base Alloy |
| 指導教授: |
黃爾文
E-Wen, Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 分子動力學 、析出強化 、中子小角度散射 |
| 外文關鍵詞: | molecular dynamics, precipitation hardening, small angle neutron scattering |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文利用中子繞射和電子掃瞄式顯微鏡所量測到的數據,建構出分子動力學模擬的系統,並將實驗單軸拉伸後的結果與電腦模擬拉伸的結果進行比較。我們利用了以下幾種分析方式:視覺化及量化分析析出相幾何參數、晶格間距的估計、中心對稱參數的分析。由以上的分析結果,可以證明我們所建構的系統和實驗上的量測有可以比較的依據。藉此了解在拉伸過程中,析出相和基材如何的交互影響,並且透過分子動力學模擬的優勢,檢視在形變過程中所發生的現象,並將現象與分析結果一起進行討論。
We have recently reported an in-situ neutron-diffraction experiments, simultaneously illuminating the diffraction of the matrix and the strengthening nano precipitates. An irreversible neutron-diffraction-profile evolution of the nano precipitates is observed. However, due to the limited measuring time, there is no conclusive trend of the nano-precipitate deformation behavior subjected to the greater stress levels. Hence, in the present work, molecular-dynamics simulations are applied to reveal the deformation mechanisms of the nano precipitate and its interaction with the surrounding matrix. The microstructure size, dislocation content, and structural parameters of the nano precipitates, quantified by X-ray, transmission electron microscopy, and small-angle neutron scattering, are used as the simulation input and reference. The simulation results show that there are two competing deformation mechanisms, which lead to the fluctuation of the nano-precipitate-diffraction widths, occurring during the higher plastic deformation stages. Based on the comparable reported measurements and the current simulated results, we successfully developed a molecular dynamics simulation approach. The development is presented in this paper.
1. Cieslak, M., T. Headley, and A. Romig, The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276. Metallurgical Transactions A, 1986. 17(11): p. 2035-2047.
2. Huang, E., et al., A neutron-diffraction study of the low-cycle fatigue behavior of HASTELLOY< sup>®</sup> C-22HS< sup> TM</sup> alloy. International Journal of Fatigue, 2007. 29(9): p. 1812-1819.
3. Huang, E.W., et al., Study of nanoprecipitates in a nickel-based superalloy using small-angle neutron scattering and transmission electron microscopy. Applied Physics Letters, 2008. 93(16): p. 161904-3.
4. Manning, P. and J.-D. Schobel, Hastelloy Alloy C-22--a New and Versatile Material for the Chemical Process. Werkst. Korros., 1986. 37(3): p. 137-145.
5. Huang, E.-W., et al., Evolution of microstructure in a nickel-based superalloy as a function of ageing time. Philosophical Magazine Letters, 2011. 91(7): p. 483-490.
6. Pike, L.M. and D.L. Klarstrom, A New Corrosion Resistant Ni-Cr-Mo Alloy with High Strength. CORROSION 2004, 2004.
7. Kumar, M. and V.K. Vasudevan, Deformation-induced pseudo-twinning and a new superstructure in Ni2Mo precipitates contained in a Ni-25Mo-8Cr alloy. Acta Materialia, 1996. 44(9): p. 3575-3583.
8. Kumar, M. and V. Vasudevan, Ordering reactions in an Ni 25Mo 8Cr alloy. Acta materialia, 1996. 44(4): p. 1591-1600.
9. Summers, T.E., R. Rebak, and R. Seeley. Influence of Thermal Aging on the Mechanical and Corrosion Properties of C-22 Alloy Welds. in TMS Fall Meeting, St. Louis, MO. 2000.
10. Arya, A., et al., Effect of chromium addition on the ordering behaviour of Ni–Mo alloy: experimental results vs. electronic structure calculations. Acta materialia, 2002. 50(13): p. 3301-3315.
11. Lu, Y.L., et al., Strengthening domains in a Ni–21Cr–17Mo alloy. Scripta Materialia, 2007. 56(2): p. 121-124.
12. Huang, E.-W., et al., Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. International Journal of Plasticity, 2008. 24(8): p. 1440-1456.
13. Reed-Hill, R.E., Physical metallurgy principles. Vol. 29. 1972: Van Nostrand New York.
14. Chen, Z., N. Kioussis, and N. Ghoniem, Influence of nanoscale Cu precipitates in α-Fe on dislocation core structure and strengthening. Physical Review B, 2009. 80(18): p. 184104.
15. Feng, J., et al., Molecular dynamical simulation of the behavior of early precipitated stage in aging process in dilute Cu–Cr alloy. Journal of Applied Physics, 2010. 107(11): p. 113514-113514-6.
16. Gornostyrev, Y.N., I. Kar’kin, and L. Kar’kina, Interaction of dislocations with nanoprecipitates of the metastable phase and dispersion strengthening of the Fe-Cu alloy. Physics of the Solid State, 2011. 53(7): p. 1388-1396.
17. Singh, C., A. Mateos, and D. Warner, Atomistic simulations of dislocation–precipitate interactions emphasize importance of cross-slip. Scripta Materialia, 2011. 64(5): p. 398-401.
18. Terentyev, D., S. Hafez Haghighat, and R. Schaublin, Strengthening due to Cr-rich precipitates in Fe–Cr alloys: Effect of temperature and precipitate composition. Journal of Applied Physics, 2010. 107(6): p. 061806-061806-8.
19. Yip, S., Handbook of Materials Modeling. 2005: Springer.
20. Zhou, X.W., R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B, 2004. 69(14): p. 144113.
21. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 1995. 117(1): p. 1-19.
22. Rapaport, D.C., The art of molecular dynamics simulation. 2004: Cambridge university press.
23. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications. 2001: Academic press.
24. Chang, J., et al., Molecular dynamics simulations of motion of edge and screw dislocations in a metal. Computational Materials Science, 2002. 23(1–4): p. 111-115.
25. Chandler, D., Introduction to modern statistical mechanics. Introduction to Modern Statistical Mechanics, by David Chandler, pp. 288. Foreword by David Chandler. Oxford University Press, Sep 1987. ISBN-10: 0195042778. ISBN-13: 9780195042771, 1987. 1.
26. Grubmüller, H., et al., Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation, 1991. 6(1-3): p. 121-142.
27. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press.
28. Horstemeyer, M., M. Baskes, and S. Plimpton, Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia, 2001. 49(20): p. 4363-4374.
29. Landau, D.P. and K. Binder, A guide to Monte Carlo simulations in statistical physics. 2005: Cambridge university press.
30. Daw, M.S. and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984. 29(12): p. 6443.
31. Nørskov, J., Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the 3d metals. Physical Review B, 1982. 26(6): p. 2875.
32. Finnis, M. and J. Sinclair, A simple empirical N-body potential for transition metals. Philosophical Magazine A, 1984. 50(1): p. 45-55.
33. Pettifor, D.G. and D. Pettifor, Bonding and structure of molecules and solids. Vol. 193. 1995: Clarendon Press Oxford.
34. Kelchner, C., S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998. 58(17): p. 11085-11088.
35. Li, J., AtomEye: an efficient atomistic configuration viewer. Modelling and Simulation in Materials Science and Engineering, 2003. 11(2): p. 173-177.
36. Ungar, T., Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 2004. 51(8): p. 777-781.
37. E-Wen Huang, G.C., Yu-Chieh Lo, Bjorn Clausen, Yu-Lih Huang, Wen-Jay Lee Tamas Ungar and Peter K. Liaw, Plastic Deformation of a Nano-Precipitate Strengthened Ni-Base Alloy Investigated by Complementary In Situ Neutron Diffraction Measurements and Molecular-Dynamics Simulations. Advanced Engineering Materials, 2012.
38. Huang, E.-W., et al., Slip-system-related dislocation study from in-situ neutron measurements. Metallurgical and Materials Transactions A, 2008. 39(13): p. 3079-3088.
39. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1).
40. Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010. 18(1): p. 015012.
41. Alexander, S. and A. Karsten, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 2010. 18(8): p. 085001.
42. Stukowski, A., V.V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 2012. 20(8): p. 085007.
43. Henderson, A., A Parallel Visualization Application. ParaView Guide, 2007.
44. Squillacote, A.H., The ParaView guide: a parallel visualization application. 2007: Kitware.