| 研究生: |
席亞媞 ELMIA HIDAYATI |
|---|---|
| 論文名稱: |
台灣中部鹿林大氣背景站 (LABS) 空氣中醛酮類化合物的表徵 CHARACTERIZATION OF CARBONYL COMPOUNDS AT LULIN ATMOSPHERIC BACKGROUND STATION (LABS) IN CENTRAL TAIWAN |
| 指導教授: |
王家麟
JIA-LIN WANG |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 醛酮化合物 、鹿林山背景觀測站 、吸附匣 、高效能液相層析儀-紫外 光/可見光偵測器 |
| 外文關鍵詞: | Carbonyls, Lulin Atmospheric Background Station (LABS), Cartridge, HPLC- UV |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣醛酮類化合物是臭氧、二次有機氣溶膠 (SOA) 和光化學產物的前驅物。 經由在臺灣中部海拔 2862 公尺高的鹿林山大氣背景觀測站(LABS)連續採樣與分析 以了解醛酮化合物日夜變化的濃度分布,連續採樣時間為 2 天,每天早上 8 點到下 午 4 點進行 2 小時採樣一次。本研究根據美國環境保護署(US EPA)TO-11A 標準方 法,採用 Supelco Lp-DNPH 商業化吸附匣,搭配高效能液相層析儀-紫外光/可見光 偵測器 (HPLC-UV)量測大氣中 15 項醛酮化合物濃度分布.
研究結果顯示採樣期間最主要醛酮化合物為丙酮,第一天與第二天平均濃度 分別為 0.45 ppbv 與 0.33 ppbv,;其次是甲醛和乙醛,第一天平均濃度為 0.29 ppbv 和 0.22 ppbv,第二天平均濃度為 0.11 ppbv 與 0.08 ppbv。日夜變化中,最高值出現 在下午 2 點,可能原因為山上光化學反應生成二次醛酮化合物,與日間地面上山風 將一次污染物從山下往山上傳輸,到達山頂時生成二次醛酮化合物。此外,第一天 所有空氣污染物濃度都高於第二天,包含醛酮化合物、揮發性有機物(VOCs)、細懸 浮微粒(PM2.5)、臭氧(O3)和一氧化碳(CO)等,研究結果顯示第一天境外傳輸時主要 污染源來自於東亞;第二天無境外污染,主要為本地傳輸,污染物濃度為典型高山 背景站現象。本論文為臺灣首次高山背景觀測站醛酮類濃度分布調查,與境外、本 地傳輸時各項空氣污染物差異與研究。
Atmospheric carbonyls are precursors of ozone, secondary organic aerosols (SOA) and photochemical products. Field sample collections at Lulin Atmospheric Background Stations (LABS) in Lulin mountain at an altitude of 2862 m ASML in Nantou, central Taiwan, were conducted to understand the diurnal variations of carbonyls in background atmosphere. The sampling was performed every 2 hours on 2 consecutive days to study diurnal variations, starting from 8 am to 4 pm. Supelco Lp-DNPH commercial cartridges based on the United States Environmental Protection Agency (US EPA) TO-11A method was used to analyze the mixing ratios of fifteen target carbonyl compounds in the atmosphere by high performance liquid chromatography with UV detection (HPLC-UV).
Acetone is the most dominant species on both days with the mixing ratios of 0.45 ppbv for the first day and 0.33 ppbv for the second day, followed by formaldehyde and acetaldehyde of 0.29 ppbv and 0.22 ppbv, respectively, on the first day, and 0.11, 0.08 ppbv, respectively, on the second day. The early afternoon (2 PM) concentrations had the highest concentrations on both days, presumably because the significant influence of photochemical reactions and the transport from the urban areas down below due to the upslope winds in daytime. In addition, the mixing ratios of all carbonyl compounds on the first day were higher than on the second day, so were other pollutants such as VOCs, PM2.5, and CO, suggesting a common mechanism to produce the similar diurnal profiles at LABS.
REFERENCES
[1] M. Possanzini, Palo, V. D., Petricca, M., Fratarcangeli, R., and Brocco, D. (1996) Measurements of Lower Carbonyls in Rome Ambient air. Atmospheric Environment 30, 3757-3764.
[2] Z.Q. Liu, Y. Cui, Q.S. He, L.L. Guo, X.Y. Gao, Y.L. Feng, Y.H. Wang, X.M. Wang (2021) Seasonal Variations of Carbonyls and Their Contributions to the Ozone Formation in Urban Atmosphere of Taiyuan, China. Atmosphere 12, 510.
[3] K. Muller (1997) Determination of Aldehydes and Ketones in the Atmosphere - A Comparative Long Time Study at An Urban and A Rural Site in Eastern Germany Chemosphere 35, 2093-2106.
[4] F. Villanueva, Tapia, Araceli., Lara, Sonia., and Salas, M. Amo. (2018) Indoor and Outdoor Air Concentrations of Volatile Organic Compounds and NO2 in Schools of Urban, Industrial and Rural Areas in Central-Southern Spain. Science of The Total Environment 622-623, 222-235.
[5] E. Gallego, Folch, Jaume., Teixidor, Pilar., Roca, F. J., and Perales, J. Fransisco. (2019) Outdoor Air Monitoring: Performance Evaluation of A Gas Sensor to Assess Episodic Nuisance/Odorous Events Using Active Multi-Sorbent Bed Tube Sampling Coupled to TD-GC/MS Analysis. Science of The Total Environment 694, 1-12.
[6] E. Grosjean, Grosjean, Daniel., Fraser, M. P., and Cass, G. R. (1996) Air Quality Model Evaluation Data for Organics. 2. C1-C14 Carbonyls in Los Angeles Air. Environ. Sci. Technol 30, 2687-2703.
[7] R.A. Morello-Frosch, Woodruff, T. J., Axelrad, D. A., and Caldwell., J. C. (2000) Air Toxics and Health Risks in California: The Public Health Implications of Outdoor Concentrations. Risk Analysis 20, 2.
[8] WHO (1989) Indoor air quality: Organic Pollutants. Environmental Technology Letters 10, 855-858.
[9] B.P. Andreini, Baroni, Roberto., Galimberti, Elisa., and Sesana, Giulio (2000) Aldehydes in the Atmospheric Environment: Evaluation of Human Exposure in the North-West Area of Milan. Microchemical Journal 67, 11-19.
[10] US-EPA (1994) Health Effects Notebook for Hazardous Air Pollutants. U. S. Environmental Protection Agency
[11] US-EPA (1999) Integrated Risk Information System (IRIS) on formaldehyde. U.S. Environmental Protection Agency
[12] US-EPA (1999) Integrated Risk Information System (IRIS) on Acetaldehyde. U.S. Environmental Protection Agency
[13] M. Strum, and Scheffe, R. (2015) National Review of Ambient Air Toxics Observations. Journal of the Air & Waste Management Association 66, 120-133.
[14] V.T.D. Hien, Lin, C., Thanh, V.C., Kim-Oanh, N.T., Thanh, B.X., Weng, C.E., Yuan, C.S., Rene, E.R. (2019) An Overview of the Development of Vertical Sampling Technologies for Ambient Volatile Organic Compounds (VOCs). Journal of Environmental Management 247, 401-412.
[15] J.H. Murillo, Marin, Jose F. R., and Roman, Susana R. (2012) Determination of Carbonyls and Their Sources in Three Sites of the Metropolitan Area of Costa Rica, Central America. Environ Monit Assess 184, 53-61.
[16] H. Lu, Cai, Quan Ying., Wen, Sheng., Chi, Yuguang., Guo, Songjun., Sheng, Guoying., Fu, Jiamo., and Ladislao, B. A. (2009) Carbonyl Compounds in the Ambient Air of Hazy Days and Clear Days in Guangzhou, China. Atmospheric Research 94, 363–372.
[17] G.A.B. Weiss, Mclaughlin, John P., and Harley, R. A. (2008) Carbonyl and Nitrogen Dioxide Emissions From Gasoline- and Diesel-Powered Motor Vehicles. Environ. Sci. Technol 42, 3944–3950.
[18] J.P. Pinto, Martins, L. D., Junior, C. Roberto., Sabino, F. C., Amador, I. R., and Solci, M. Cristina (2014) Carbonyl Concentrations from Sites Affected by Emission from Different Fuels and Vehicles. Atmospheric Pollution Research 5, 404-410.
[19] D. Grosjean, Grosjean, Eric., and Gertler, A. W. (2001) On-Road Emissions of Carbonyls from Light-Duty and Heavy-Duty Vehicles. Environ. Sci. Technol 35, 45- 53.
[20] S.G. Moussa, El-Fadel, Mutassem., and Saliba, N. A. (2006) Seasonal, Diurnal and Nocturnal Behaviors of Lower Carbonyl Compounds in the Urban Environment of Beirut, Lebanon. Atmospheric Environment 40, 2459–2468.
[21] A. Vairavamurthy, Roberts, J. M., and Newman, Leonard. (1992) Methods for Determination of Low Molecular Weight Carbonyl Compounds in the Atmosphere a Review. Atmosphere Environment 26A, 1965-1993.
[22] US-EPA (2019) National Air Toxics Trends Station Work Plan Template. U. S. Environmental Protection Agency
[23] J. Zhang, He, qingci., and Lioy, P. J. (1994) Characteristics of Aldehydes: Concentrations, Sources, and Exposures for Indoor and Outdoor Residential Microenvironments. Environ. Sci. Technoi 28, 146-152.
[24] A. Baez, Padilla, Hugo., Garcia, Rocio., Torres, Ma Del Carmen., Rosas, Irma,. and Belmont, Raul. (2003) Carbonyl Levels in Indoor and Outdoor Air in Mexico City and Xalapa, Mexico. The Science of the Total Environment 302, 211–226.
[25] J.-H. Cheng, Lee, Yi-Shiun., and Chen, Kang-Shin. (2015) Carbonyl Compounds in Dining Areas, Kitchens and Exhaust Streams in Restaurants with Varying Cooking Methods in Kaohsiung, Taiwan. Journal of Environmental Sciences
[26] E.B. Bakeas, Argyris, Dimitrios I., Siskos, Panayotis A. (2003) Carbonyl Compounds in the Urban Environment of Athens, Greece. Chemosphere 52, 805– 813.
[27] X. Pang, and Mu, Yujing. (2006) Seasonal and Diurnal Variations of Carbonyl Compounds in Beijing Ambient Air. Atmospheric Environment 40, 6313–6320.
[28] C.S. Christensen, Skov, H., Nielsen, T., and Lohse, C. (2000) Temporal Variation of Carbonyl Compound Concentrations at a Semi-Rural Site in Denmark. Atmospheric Environment 34, 287-296.
[29] K. Granby, and Christensen, C. S. (1997) Urban and Semi Rural Observations of Carboxylic Acids and Carbonyls. Atmospheric Environment 31, 1403-1415.
[30] L. Ho. K. F., S. C., Louie, Peter., and Zou, S. C. (2002) Seasonal Variation of
Carbonyl Compound Concentrations in Urban Area of Hong Kong. Atmospheric
Environment 36, 1259–1265.
[31] D. Grosjean, and Swanson, R. D (1983) Carbonyls in Los Angeles Air: Contribution
of Direct Emission and Photochemistry. The Science of the Total Environment 29,
65-85.
[32] D. Grosjean, Miguel, A. H., and Tavares, T. M. (1990) Urban Air Pollution in Brazil:
Acetaldehyde and Other Carbonyls. Atmospheric Environment 24B, 101-106.
[33] M.A. Rubio, Zamorano, N., Lissi, Eduardo, Rojas, Alicia., Gutierrez, Luis., and Baer, D. V. (2006) Volatile Carbonylic Compounds in Downtown Santiago, Chile.
Chemosphere 62, 1011–1020.
[34] H.K. Wang, Huang, Chin Hung., Chen, Kang Shin., and Peng, Yen Ping. (2010)
Seasonal Variation and Source Apportionment of Atmospheric Carbonyl Compounds in Urban Kaohsiung, Taiwan Aerosol and Air Quality Research 10, 559–570.
[35] S.-J. Guo, Chen, Mei., He, Xiao-Lang., Yang, Wei-Wei., and Tan, Ji-Hua. (2014) Seasonal and Diurnal Characteristics of Carbonyls in Urban Air in Qinzhou, China. Aerosol and Air Quality Research 14, 1653-1664.
[36] A.P. Altshuller, Miller, J. D., and Sleva, S. F., (1961) Determination of Formaldehyde in Gas Mixtures by the Chromotropic Acid Method. Analytical Chemistry 33, 621-625.
[37] J. Lim, Kim, S., Kim, Ar., Lee, W., Han, J., and Cha, J.-S. (2014) Behavior of VOCs and Carbonyl Compounds Emission from Different Types of Wallpapers in Korea. International Journal of Environmental Research and Public Health 11, 4326-4339.
[38] S. Kim, Kim, J.-A., An, J.-Y., Kim, H.-J., Kim, S. D., and Park, J. C. (2007) TVOC and Formaldehyde Emission Behaviors from Flooring Materials Bonded with Environmental-Friendly MF/PVAc Hybrid Resins. Indoor Air 17, 404-415.
[39] K.-H. Kim, Hong, Y.-J., Pal, R., Jeon, E.-C., Koo, Y.-S., and Sunwoo, Y. (2008) Investigation of Carbonyl Compounds in Air from Various Industrial Emission Sources. Chemosphere 70, 807–820.
[40] Y.K. Seo, and Baek, S.O. (2011) Characterization of Carbonyl Compounds in the Ambient Air of an Industrial City in Korea. Sensors 11, 949–963.
[41] H.-H. Yang, Liu, Ta-Chuan., Chang, Chia-Feng., and Lee, Eva. (2012) Effects of Ethanol-Blended Gasoline on Emissions of Regulated Air Pollutants and Carbonyls from Motorcycles. Applied Energy 89, 281-286.
[42] C.-J. Liang, Liu, Yi-Shan., Liu, Guo-Yang., and Liang, Jeng-Jong. (2016) Spatial and Temporal Analysis of Ambient Carbonyls in a Densely Populated Basin Area of Central Taiwan. Sustainable Environment Research 1-11.
[43] D. Pierotti (1990) Analysis of Trace Oxygenated Hydrocarbons in the Environment. Atmospheric Chemistry 10, 373-382.
[44] US-EPA (1999) Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by gas Chromatography/Mass Spectrometry (GC/MS): Compendium Method TO-15 in Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. U. S. Environmental Protection Agency
[45] US-EPA (1999) Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air-Second Edition. Center for Environmental Research Information
[46] A.P. Altshuller, and Leng, L. J., (1963) Application of the 3-methyl-2- benzothiazolone hydrazone Method for Atmospheric Analysis of Aliphatic Aldehydes. Analytical Chemistry 35, 1541-1542.
[47] M.F. Fracchia, Schuette, F. J., and Mueller, P. K., (1967) A Method for Sampling and Determination of Organic Carbonyl Compounds in Automobile Exhaust. Environ. Sci. Technol 1, 915-922.
[48] R. Kuntz, Lonneman, W., Namie, G., and Hull. L. A., (1980) Rapid Determination of Aldehydes in Air Analysis. Analytical Letters 13, 1409-1415.
[49] D.C. Lowe, Schmidt, U., Ehhalt, D. H., Frischkorn, C. G. B., and Nurnberg, H. W. (1981) Determination of Formaldehyde in Clean Air. Environ. Sci. Technol 15, 819- 823.
[50] R.K. Beasley, Hoffmann, C. E., Rueppel, M. L., and Worley, J. W. (1980) Sampling of Formaldehyde in Air with Coated Solid Sorbent and Determination by High Performance Liquid Chromatography. Analytical Chemistry 52, 1110-1114.
[51] G. andersson, Andersson, K., Nilsson, K., and Levin, J. O., (1979) Chemosorption of Formaldehyde on Amberlite XAD-2 Coated with 2,4-dinitrophenylhydrazine. Chemosphere 8, 823-827.
[52] US-EPA (1984) Method for the Determination of Aldehydes and Ketones in Ambient Air Using High Performance Liquid Chromatography (HPLC). U.S. Environmental Protection Agency
[53] NIEA (2016) Test Method for Gaseous Aldehydes in the Ambient Air by DNPH Derivatized using High Performance Liquid Chromatography. Taiwan Environmental Protection Administrations
[54] D. Grosjean, and Fung, K., (1982) Collection Efficiencies of Cartridges and Microimpingers for Sampling of Aldehydes in Air as 2,4-dinitrophenylhydrazones. Analytical Chemistry 54, 1221-1224.
[55] K. Kuwata, Uebori, M., Yamasaki, H., and Kuge, Y. (1983) Determination of Aliphatic Aldehydes in Air by Liquid Chromatography. Analytical Chemistry 55, 2013-2016.
[56] J.O. Levin, Andersson, K., Lindahl, R., and Nilsson, C. A. (1985) Determination of Sub-Part-Per-Million Levels of Formaldehyde in Air Using Active or Passive Sampling on 2,4-dinitrophenylhydrzine-Coated Glass Fiber Filters and High- Performance Liquid Chromatography. Analytical Chemistry 57, 1032-1035.
[57] Y. Shen, and Hee, S. S. (2000) Optimization of a Solid Sorbent Dynamic Personal Air Sampling Method for Aldehydes. Applied Occupational and Environmental Hygiene 15, 228-234.
[58] S.W. Tsai, and Hee, S. S. (1999) A New Passive Sampler for Regulated Workplace Aldehydes. Appl Occup Environ Hyg 14, 255-262.
[59] J. Zhang, Zhang, L., Fan, Z., and Ilacqua, V. (2000) Development of the Personal Aldehydes and Ketones Sampler Based upon DNSH Derivatization on Solid Sorbent. 34, 2601-2607.
[60] W. Carter (2010) Updated Maximum Incremental Reactivity Scale and Hydrocarbon Bin Reactivities for Regulatory Applications College of Engineering Center for Environmental Research and Technology University of California 1-65.
[61] E. Grosjean, and Grosjean, D. (1995) Performance of DNPH-Coated C18 Cartridges for Sampling C1-C9 Carbonyls in Air. Int J Environ Anal Chem 61, 343-360.
[62] S.S.H. Ho, and Yu, J. Z. (2004) Determination of Airborne Carbonyls: Comparison
of a Thermal Desorption/GC Method with the Standard DNPH/HPLC Method.
Environ. Sci. Technoi 38, 862-870.
[63] S. Tejada (1986) Evaluation of Silica Gel Cartridges Coated In Situ with Acidified
2,4-Dinitrophenylhydrazine for Sampling Aldehydes and Ketones in Air. Intern. J.
Environ. Anal. Chem 26, 167-185.
[64] R.R. Arnts, and Tejada, S. B. (1989) 2,4-Dinitrophenylhydrazine-Coated Silica Gel
Cartridge Method for Determination of Formaldehyde in Air: Identification of an
Ozone Interference. Environ. Sci. Technol. 23, 1428-1430.
[65] C.-Y. Peng, Lan, Cheng-Hang., and Wu, Tzong-Jer (2009) Investigation of Indoor
Chemical Pollutants and Perceived Odor in an Area with Complaints of Unpleasant
Odors. Building and Environment 44, 2106-2113.
[66] C.F. Ou-Yang, Lin, N. H., Sheu, G. R., Lee, C. T., and Wang, J. L (2012) Seasonal
and Diurnal Variations of Ozone at a High-Altitude Mountain Baseline Station in
East Asia. Atmos. Environ. 46, 279-288.
[67] C.F. Ou-Yang, Lin, N. H., Lin, C. C., Wang, S. H., Sheu, G. R., Lee, C. T., Schnell,
R. C., Lang, P. M., Kawasato, T., and Wang, J. L. (2014) Characteristics of Atmospheric Carbon Monoxide at a High-Mountain Background Station in East Asia. Atmos. Environ. 89, 613-622.
[68] K.-S. Chen, Ho, Y.T., Lai, C.H., Tsai, Y.A., and Chen, Shui-Jen. (2004) Trends in Concentration of Ground-Level Ozone and Meteorological Conditions during High Ozone Episodes in the Kao-Ping Airshed, Taiwan. Journal of the Air & Waste Management Association 54, 36-48.
[69] J.D. Fuentes, and Dann, T.F. (1994) Ground-Level Ozone in Eastern Canada: Seasonal Variations, Trends, and Occurrences of High Concentrations. J. Air & Waste Manage. Assoc. 44, 1019-1026.
[70] J.S. Bower, Stevenson, K.J., Broughton, G.F.J., Lampert, J.E., Sweeney, B.P., Wilken, J. (1994) Assessing Recent Surface Ozone Concentrations in the U.K. Atmos. Environ. 28, 115-128.
[71] W.K. Jo, and Nam, C.W. (1999) Characteristics of Urban Ground-Level Ozone in Korea. J. Air & Waste Manage. Assoc. 49, 1425-1433.
[72] R. Atkinson (2000) Atmospheric Chemistry of VOCs and NOx. Atmospheric Environment 34, 2063-2101.
[73] X. Yang, Xue, L., Wang, T., Wang, X., Gao, J., Lee, S., Blake, D.R., Chai, F., Wang, W. (2018) Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry. J. Geophys. Res. Atmos. 123, 1426–1440.