跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余業緯
Yeh-Wei Yu
論文名稱: 同軸全像儲存系統之特性與改良及溫度補償
The Characteristic Study, Improvement and Temperature Compensation of the Collinear Holographic Storage System
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 200
中文關鍵詞: 相位疊加法體積全像相位調製收縮膨脹熱膨脹溫度補償同軸全像儲存
外文關鍵詞: phase modulation, Volume holographic, VOHIL, shrinkage, expansion, thermal expansion, temperature compensation, storage, coaxial, collinear
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的在於研究同軸式體積全像儲存系統之特性,再進一步提出改良,並解決同軸系統由溫度變化所產生的膨脹收縮問題,研究方式採取先推導出各狀況下之近軸近似解,藉由近軸近似解所呈現的各種物理特性提出改良方案,其成果為:
    1.我們提出使用透鏡陣列相位調製方式以使繞射訊號達到最佳的SNR。
    2.我們提出點位移靈敏度與畫素位移靈敏度之概念,並比較使用此兩種觀點分析位移靈敏度之優劣。
    3.以解析解為基礎,並考量材料應變對碟片厚度的影響,我們提出世界第一套同軸系統之溫度補償方案,甚至能夠在不改變讀取光波長的情況下進行溫度補償。


    The purpose of this dissertation is to study the property of the collinear holographic storage system, and to improve the system. Besides, we propose methods to compensate the problem caused by thermal expansion. In order to study this topic, we derive the paraxial solution of the collinear system, which makes it easy to understand the physical characteristic of the system. Thus, we can improve the system based on the physical concept. The achievements in this dissertation are list below.
    1.We propose the lens array phase modulation, which makes the diffracted signal achieve the best signal to noise ratio.
    2.We propose the concepts of shift selectivity for point object and shift selectivity for pixel object, and compare the shift selectivity based on these two different concepts.
    3.Based on the paraxial solution, and considering the thickness variation of the material caused by strain, we propose the first solution in the world for temperature compensation of the collinear system without changing the wave length of reading beam.

    摘要 I 誌謝 III 目錄 V 圖索引 IX 表索引 XIV 第一章 緒論 1 1-1研究動機 1 1-1-1 儲存技術的傳輸速度將在未來扮演關鍵角色 1 1-1-2 資料蒐尋檢索越趨重要 3 1-1-3 能夠快速大量複製的光儲存技術無可取代 3 1-2全像技術之發展史 4 1-3 論文大綱 10 第二章 同軸全像光學儲存系統 15 2-1同軸系統架構 15 2-2同軸系統之改良技術 19 2-2-1 405nm雷射光源 20 2-2-2 相位光罩 20 2-2-3 高 NA之物鏡與afocal system 21 2-2-4 偏振分光散射器 22 2-3 大量複製方式 27 第三章 體積全像計算理論 30 3-1布拉格條件 30 3-2耦合理論 32 3-2-1 布拉格匹配 39 3-2-2 布拉格不匹配 41 3.3相位疊加法 44 3-4 近距離傳遞下之Fresnel transform 48 第四章 點光源擴散響應的模擬分析與改良 52 4-1公式推導 54 4-2 模擬分析 58 4-2-1 二元相位調製方式 62 4-2-2 透鏡陣列相位調製方式 64 4-2-2-1 使用透鏡陣列進行相位調製 64 4-2-2-2 使用柱狀透鏡環型陣列做相位調製 68 4-3 各種調製方式之比較 71 4-4 結論 74 第五章 位移靈敏度的推導與模擬分析 76 5-1導論 76 5-2點位移靈敏度之推導 78 5-3畫素位移靈敏度之推導 82 5-4定性分析厚度對位移靈敏度的影響 87 5-5 模擬分析 90 5-5-1 二維畫素位移靈敏度 90 5-5-2 模擬比較不同參考光調製下之畫素位移靈敏度與點位移靈敏度 93 5-6 結論 97 第六章 溫度補償技術 99 6-1 導論 99 6-2 溫度的影響 100 6-3 使用K-Space對各種儲存系統作定性分析 102 6-3-1 平面波角度多工架構 102 6-3-2 球面波位移多功架構 107 6-3-3同軸架構 109 6-4 材料膨脹收縮後繞射光之近軸近似解 113 6-5 溫度變化與碟片變形量之關係 125 6-5-1 基本理論 125 6-5-2 建立溫度變化下碟片變形量之模型 127 6-5-3 解側向之溫度線膨脹係數αL 128 6-5-4 應力所產生的雙折變效應 130 6-6 穿透式光柵與反射式光柵之溫度容忍度模擬分析 131 6-7 點光源擴散響應隨溫度變化之模擬分析 136 6-7-1 夾層基板其線膨脹係數為可忽略時 139 6-7-2 夾層基板之線膨脹係數為可選擇時 147 6-7-3 徑向不變調製 157 6-8 結論 168 第七章 結論 171 中英文名詞對照表 174 附錄 A 179

    1.T. Shimura, “Holographic Memory Roadmap,” IWHM 2008 Digest, 22C2 (2008).
    2.H. Horimai and X. Tan,”Duplication technology for secured Read-Only Holographic Versatile Disc,” ISOM/ODS’05 Tech. Digest ,MB7(2005).
    3.D. Gabor, “ A new microscopic principle,” Nature 161, 777(1948).
    4.P. J. van Heerden, " Theory of optical information storage in solids," Appl. Opt. 2, 393(1963).
    5.Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J.J. Levinstein and K. Nassau,“ Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3,” Appl.Phys. Lett. 9, 72 (1966).
    6.N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii,“ Holographic storage in electrooptic crystals.I. Steady state,” Ferroelectrics 22, 949(1979).
    7.J. Feinberg, “ Self-pumped, continuous-wave phase-conjugator using internal reflection,“ Opt. Lett. 7, 486 (1982).
    8.A. Yariv and D. M. Pepper,“ Amplified reflection, phase conjugation and oscillation in degenerate four-wave mixing,“ Opt. Lett 1, 16 (1977).
    9.J. White and A. Yariv, “ Real-time image processing via four-wave mixing in a photorefarctive medium,“ Appl. Phys. Lett. 37, 5 (1980).
    10.J. P. Huignard and J. P. Herriau,“ Real-time coherent object edge reconstruction with Bi12SiO20 crystals,“ Appl. Opt. 17, 2671 (1978).
    11.E. Ochoa, J. W. Goodman and L. Hesselnik, “ Real-time enhancement of defects using BSO,“ Opt. Lett. 10, 621 (1985).
    12.M. D. Levenson, K. M. Johnson, V. C. Hanchatt and K. Chiarg,“ Projection photolithography by using wavefront conjugation,“ J.Opt. Soc. Am. 71, 737 (1986).
    13.A. E. T. Chiou and, P. Yeh, “ Parallel image substraction using a phase-conjugate Michelson interferometer,“ Opt. Lett. 11, 306 (1986).
    14.S.-K. Kwong, G. A. Rakuljic, V. Leyva and A. Yariv, “ Real-time image processing using a self-pumped phase-conjugate mirror,“ Proc. SPIE 613, 36 (1986).
    15.D. Z. Anderson, D. M. Lininger and J. Feinberg, “ Optical tracking novelty filter,“ Opt. Lett. 12, 123 (1987).
    16.Yeh, P., Chiou, A.E., Beckwith, P., Chang, T., and Khoshnevisan, M., “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328 (1989).
    17.C. C. Sun, M.W. Chang and K.Y. Hsu, " Matrix-matrix multiplication by using anisotropic self-diffraction in BaTiO3, " Applied Optics 33, 4501 (1994).
    18.P. Yeh, A. E. Chiou and J. Hong, “ Optical interconnection using dynamic photorefractive holograms,“ Appl. Opt. 27, 2093 (1987).
    19.C. C. Sun, M.W. Chang and K.Y. Hsu, " Contrast-reversible photorefractive incoherent-to-coherent optical converter using anisotropic strong volume hologram," Opt. Lett. 18, 655 (1993).
    20.Y. Owechko, G. J. Dunning, E. Maron and B. H. Soffer, “ Holographic associative memory with nonlinearities in the correlation domain,“ Appl. Opt. 26, 1990 (1987).
    21.D. Psaltis and N. Farhat, “ Optical information processing based on an associative memory model of neural nets with thresholding and feeback,“ Opt. Lett. 10, 198 (1985).
    22.N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “ Holographic storage in electrooptic crystals. II. Beam coupling and light amplification,“ Ferroelectrics 22, 961 (1979).
    23.P. J. van Heerden, " Theory of optical information storage in solids," Appl. Opt. 2, 393 (1963).
    24.F. H. Mok, “ Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett.18, 915 (1993).
    25.D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782 (1995).
    26.G. Barbastathis, M. Levene, and D. Psaltis, “ Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403 (1996).
    27.F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, “ Wavelength multiplexed reflection matched spatial filters using LiNbO3," Opt. Commun. 81, 343-347 (1991).
    28.G. A. Rakuljic, V. Leyva, and A. Yariv, " Optical data storage by using orthogonal wavelength-multiplexed volume hologram," Opt. Lett. 17, 1471-1473 (1992).
    29.C. Denz, G. Pauliat, and G. Roosen, " Volume hologram multiplexing using a deterministic phase encoding method," Opt. Commun. 85, 171 (1991).
    30.C. C. Sun, R. H. Tsou, W. Chang, M.W. Chang and J.Y. Chang, " Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass," Optics and Quantum Electronics 28, 1551-1561 (1996).
    31.J. F. Heanue, M. C. Bashaw, and L. Hesselink, “ Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Applied Optics 34, 6012-6015 (1995).
    32.P. Refregier and B. Javidi, “ Optical image encryption using input and Fourier plane random phase encoding,” Opt. Lett. 20, 767-769 (1995).
    33.B. Wang, and C. C. Sun, “Enhancement of signal-to-noise ratio of a double random phase encoding encryption system,” Optical Engineering 40, 1502-1506 (2001).
    34.C. C. Sun, W. C. Su, B. Wang and A. E. T. Chiou, “Lateral Shifting Sensitivity of a Ground Glass for Holographic Encryption and Multiplexing Using Phase Conjugate Readout Algorithm,” Optics Communications 191, 209-224 (2001).
    35.A. Pu and D. Psaltis, in 1997 Optical Data Storage Topical Meeting (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 48–49.
    36.G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A.Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 250 Gigapixels/in2”, Opt. Lett. 26, 444–446 (2001).
    37.G. W. Burr and T. Weiss, “Compensation for pixel misregistration in volume holographic data storage,” Opt. Lett. 26,542–544 (2001).
    38.G. W. Burr, “Holographic data storage with arbitrarily misaligned data pages,” Opt. Lett. 27, 542–544 (2002).
    39.M. Ayres, A. Hoskins, and K. Curtis, “Image oversampling for page-oriented optical data storage”, Appl. Optics. 45, 2459-2464 (2006)
    40.K. Curtis, “Holographic Data Storage,” presented at 2005 Fall Research Review, Center for Magnetic Recording Research, University of California, San Diego, October 26,2005.
    41.E.Chuang, K.Curits, Y. Yang, A.Hill, “Consumer holographic read-only memory reader with mastering and replication techonolgy”, Opt. Lett. 31,1050-1052 (2006)
    42.H. Horimai, “Collinear holography,” Proc. 5th Pacific Rim Conference on Lasers and Electro-Optics 1, 376–377 (2003).
    43.H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12, 90–92 (2005).
    44.H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    45.K. Tanaka, H. Mori, M. Hara, K. Hirooka, A. Fukumoto, and K. Watanabe, “High density recording of 270 Gbits/inch2 in a coaxial holographic storage system,” Tech. Digest of ISOM 2007, MO–D–03.
    46.H. Horimai and X. Tan, “Holographic versatile disc system,” Proc. of SPIE 5939, 593901(2005).
    47.H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk, ” Appl. Opt. 45, 910-914 (2006)
    48.C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Optics Express 15, 18111-18118 (2007).
    49.K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto and K. Watanabe, “Improved performance in coaxial holographic data recording,” Optics Express 15, 16196-16209 (2007).
    50.C. B. Burckhardt, “Use of a random phase mask for the recording Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
    51.A. Fukumoto, “Development of a Coaxial Holographic Data Recording System,” IWHM 2008 Digest, 22C1 (2008).
    52.Y. W. Yu, C. Y. Cheng, S. C. Hsieh, T. C. Teng and C. C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. Lett.48, 020501 (2009).
    53.H. Horimai, “Information recording method, reproducing method, and recording/reproducing method utilizing holography.” United States Patent, US 7321542 B2 (2008).
    54.T. Shimura, Y.Ashizuka, M. Terada, R. Fujimura, and K. Kuroda, “What Limits the Storage Density of the Collinear Holographic Memory?” ODS’07 Tech. Digest, TUD1 (2007).
    55.K. Kimura, “Improvement of the optical signal-to-noise ratio in common-path holographic storage by use of a polarization-controlling media structure,” Opt. Lett. 30, 878–880 (2005).
    56.S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, M. Furuki, K. Hayashi, K. aga, and H. Yoshizawa,“Optical noise reduction by reconstructing positive and negative images from Fourier holograms in coaxialholographic storage systems,” Opt. Lett. 31, 1639–1641 (2006).
    57.H. Horimai, X. Tan1 and Y. Aoki,“ High-density recording storage system by Collinear holography,” Proc. of SPIE 6187, 618701(2006).
    58.蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電所博士論文,中華民國九十年。
    59.Pochi Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
    60.H. Kogelnik, “Coupled Wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
    61.C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184–1185 (2003).
    62.M. Born and E Wolf, Principles of Optics (Cambridge University Press,1999 ).
    63.J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
    64.T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. D. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. of SPIE 6282, 62820s (2006).
    65.T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. D. Tan and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Letters 31, 1208–1210 (2006).
    66.H. Horimai and J. Li, “A novel collinear optical setup for holographic data storage system,” Proc. of SPIE 5380, 297–303 (2004).
    67.S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252 (2006).
    68.T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Calculation of the Pixel Spread Function with a Simple Numerical Model for the Collinear Holographic Storage System,” ISOM/ODS’05 Tech. Digest ,PD6 (2005).
    69.謝舒菁,同軸式體積全向儲存系統之研究與改良,國立中央大學光電所碩士論文,中華民國九十六年。
    70.鄭智元,利用相位調製改良同軸式體積全像儲存系統,國立中央大學光電所碩士論文,中華民國九十七年。
    71.S. Campbell, Y. Zahang, and P. Yeh, “Material limitation in volume holographic copying,” in optical computing, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper OMC15 (1995).
    72.S. Campbell and P. Yeh, “Absorption effects in photorefractive volume holographic memory,” in Photorefractive Materials, Effects, and Devices Topical Meeting (Optical Society of America, Washington, D.C., 1995), 128-131 (1995).
    73.S. Campbell, S.-H. Lin, X. Yi, and P. Yeh, J. Opt. Soc. Am. B 13, 2218(1996).
    74.S. Baba, S. Yoshimura and N. Kihara, “Inter-frame Image Processing Method for Recovering Holographic Images with Media Shrinkage,” ISOM/ODS’05 Tech. Digest, Mp17 (2005).
    75.A. Hoskins, A. Hill, B. Sissom, C. Stanhope and K. Curtis, “Temperature Compensation Strategy for Holographic Storage,” ODS Tech. Digest, WC4 (2006).
    76.J. T. Gallo and C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33, 6797-6804 (1994).
    77.M. Toishi, T. Tanaka and K. Watanabe, “Experimental analysis in recording transmission and reflection holograms at the same time and location,” Appl. Opt. 45, 6367-6373 (2006).
    78.L. Menetrier, G. W. Burr, “Density implications of shift compensation postprocessing in holographic storage systems,” Appl. Opt. 42, 845-860 (2003).
    79.M. R. Ayres, A. Hoshkins and K. Curtis, “Image Oversampling for Holographic Data Storage ISOM/ODS’05 Tech. Digest, ThE4 (2005).
    80.L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339 (1998)
    81.S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw–Hill, New York, 1970), Chap. 13.
    82.H. Ohkita, K. Ishibashi, D. Tsurumoto, A. Tagaya and Y. Koike, “Compensation of the photoelastic birefringence of a polymer by doping with an anisotropic molecule,” Appl. Phys. A 81, 617–620 (2005)
    83.M. Toishi, “Holographic recording and reconstructing apparatus and holographic recording and reconstructing method,” United States Patent Application Publication, US 20060176532 A1 (2006).
    84.B. King, K. Anderson and K. Curtis, “System and method for reflective holographic storage with associated multiplexing technique,” United States Patent, US 6721076 B2 (2004).

    QR CODE
    :::