跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳柏辰
Bo-Chen Chen
論文名稱: 以螢光顯微術研究蛋白質Pmp1p加入三元脂質人造膜的效應
The Effect of Protein Pmp1p on DPPC/POPC/Ergosterol Membranes
指導教授: 薛雅薇
Ya-Wei Hsueh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 生物物理研究所
Graduate Institute of Biophysics
畢業學年度: 97
語文別: 中文
論文頁數: 52
中文關鍵詞: 氫離子幫浦共軛焦顯微鏡脂質浮排人造膜
外文關鍵詞: DPPC, POPC, Ergosterol, Pma1p, Pmp1p, Lipid raft, H+-ATPase, Model membrane, Confocal microscopy
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Pmp1p是單次穿越細胞膜的小型蛋白質,主要的功能是調控細胞膜上的氫離子幫浦(H+-ATPase),我們利用單層巨型微胞(GUV, giant unilamellar vesice),其中膜成分包含了飽和脂質DPPC、不飽和脂質POPC、真核維生物固醇ergosterol和蛋白質Pmp1p,主要使用的儀器有共軛焦顯微鏡和螢光顯微鏡。我們改變溫度和Pmp1p的濃度去觀察單層巨型微胞(GUV, giant unilamellar vesice)的交互作用,並觀察單層巨型微胞(GUV, giant unilamellar vesice)人造膜的型態。
    添加Pmp1p到1:1:1 DPPC/POPC/ergosterol會影響到單層巨型微胞(GUV, giant unilamellar vesice)人造膜型態上的改變,當蛋白質濃度增加到0.2 mol% Pmp1p的過程中,亮區區塊(應為ld態)會隨之增加,暗區區塊(應為lo態)會隨之減少,這暗示了Pmp1p會使lo態的區塊比例減少,即脂質浮排(lipid raft)。另外Tmix的減少也指出了Pmp1p減少了有序的GUV人造膜。Pmp1p位在亮區區塊中,暗示Pmp1p較不喜歡位在脂質浮排(lipid raft)上,會優先地結合在非脂質浮排(non-lipid raft)。這與現行的觀點不同,由於Pmp1p能調控脂質浮排(lipid raft)上氫離子幫浦Pma1p的功能,因此推測兩者可能都在脂質浮排上。我們的結果指出Pmp1p和Pma1p是位在膜上不同區域,Pmp1p和Pma1p的調控過程是一種間接且尚未了解的機制。


    Pmp1p is a small single-membrane span proteolipid that functions as a regulatory subunit of the plasma membrane H+-ATPase Pma1p. To explore the interaction of Pmp1p and lipids, we study the properties of GUV (giant unilamellar vesicle) model membranes composed of DPPC, POPC, ergosterol and protein Pmp1p by fluorescence and confocal microscopy. The fluorescence images of GUV membranes were taken as a function of temperature and Pmp1p concentration. The morphology of the GUV membranes is observed.
    Addition of Pmp1p to 1:1:1 DPPC/POPC/ergosterol influences the morphology of GUV membranes. The bright phase (presumably in the ld phase) increases, and the dark phase (presumably in the lo phase) decreases with increasing Pmp1p concentration up to 0.2 mol% Pmp1p. This suggests that Pmp1p decreases the fraction of the lo-phase regions, ie. lipid rafts. In addition, the decrease of Tmix also indicates that Pmp1p decreases the order of GUV membranes. It is found that Pmp1p locates in the bright-phase regions, implying that Pmp1p is preferentially associated with the non-raft region rather than the raft region. This is in disagreement with current views. It is believed that Pmp1p regulates the function of another raft protein H+-ATPase (Pma1p). Our results suggest that proteins Pmp1p and Pma1p exist in different parts of the membrane, and Pmp1p interacts with Pma1p indirectly via an unknown mechanism.

    第一章 緒論 1 1-1 生物細胞膜 1 1-2 膜流動的生物意義 4 1-3 氫離子幫浦(H+-ATPase) 5 1-4 蛋白質Pmp1p 6 1-5脂質運動與膜蛋白之間的交互作用 9 1-6研究動機與實驗設計 10 第二章 原理 11 2-1螢光顯微鏡原理 11 2-2共軛焦顯微鏡原理 12 2-3螢光原理 15 2-4螢光脂質分子NBD-DOPE 17 2-5蛋白質螢光標記分子Texas red 18 2-6微胞電製法 20 2-7螢光分佈 22 2-7-1 NBD-DOPE 22 2-7-2 Texas red                 22 第三章 材料與方法 23 3-1試劑藥品 23 3-2樣品濃度 23 3-3蛋白質標記 24 3-4 GUV製備 24 3-5偵測蛋白質位置與脂質分佈位置 26 3-6數據分析 27 3-6-1形態學分析(morphology analysis) 27 3-6-2螢光分佈定量分析 30 第四章 實驗結果與討論 32 4-1蛋白質Pmp1p參與POPC/DPPC/Ergosterol人造膜 32 4-2蛋白質Pmp1p濃度與Tmix溫度改變的關聯性 39 4-3藉由蛋白質Pmp1p濃度的改變如何影響GUV的尺寸 40 4-4蛋白質Pmp1p所在的位置 43 4-5蛋白質Pmp1p調控Pma1p的可能調節機制假說 47 第五章 結論 48 參考文獻 50

    [1] B. Alberts, D. Bray, J. Lewis, M. Raff,. Roberts, and J. D. Watson. Molecular Biology of the Cell. Fifth edition (2008).
    [2] Rietveld A, Neutz S, Simons K, et al. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. Journal of biological chemistry 274 (1999) 12049-12054.
    [3] Simons K, Ikonen E. Functional rafts in cell membranes. Nature 387 (1997)
    569-572.
    [4] Kerfeld CA, Sawaya MR, Tanaka S, et al. Protein structures forming the shell of primitive bacterial organelles. Science 309 (2005) 936-938.
    [5] Smondyrev AM, Berkowitz ML. Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol. Biophysical Journal 80 (2001) 1649-1658.
    [6] Ya-Wei Hsueh, Mei-Ting et al. Ergosterol in POPC Membranes: Physical
    Properties and Comparison with Structurally Similar Sterols. Biophysical Journal 92 (2007) 1606 - 1615.
    [7] John F. Nagle, Stephanie Tristram-Nagle. Structure of lipid bilayers.Biochimica et Biophysica Acta 1469 (2000) 159-195K. Simens, and R. Ehehalt. Cholesterol, lipid rafts, and disease. Journal of clinical Investigation 110 (2002) 597-603.
    [8] Andrey Filippov, Greger Orädd, Göran Lindblom . The Effect of Cholesterol on the Lateral Diffusion of Phospholipids in Oriented Bilayers. Biophysical Journal 84 (2003) 3079-3086.
    [9] S.J.Singer and Garth L. Nicolson. The Fluid Mosaic Model of the Structure of Cell Membranes. Science 18(1972) 720 – 731.
    [10] Filippov A, Oradd G, Lindblom G. Lipid lateral diffusion in ordered and disordered phases in raft mixtures. Biophysical Journal 86 (2004) 891-896.
    [11] Veatch, S. L. Liquid immiscibility in model bilayer lipid membranes. PhD thesis. University of Washington (2008).
    [12] Robert K. Murray (Author), Daryl K. Granner et al. Harper''s Biochemistry. 27 edition (2006).
    [13] Catherine Nevarre, Patrice Catty, Serge Leterme, Fred Dietrich, and Andre Goffeau.Two distinct gene encode small isoproteolipid affecting plasma membrane H+-ATPase activity of Saccharomyces cerevisiae. Journal of Biological Chemistry 269 (1994) 21262-2126.
    [14] Catherine Navarre et al. Purification and complete sequence of a small proteolipidassociated with the Plasma Membrane H(+)-ATPase of Saccharomyces cereuisiae. Journal of Biological Chemistry 267 (1992) 6425-6428.
    [15] V Beswick, M Roux et al. 1H- and 2H-NMR studies of a fragment of PMP1, a regulatory subunit associated with the yeast plasma membrane H+-ATPase. Conformational properties and lipid-peptide interactions. Biochimie 80 (1998) 451-459.
    [16] R. Lipowsky and E. Sackmann. Structure and dynamics of membranes from cell to vesicles. Volume 1A. Fifth Edition (1995).
    [17] Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiological Reviews 81 (2001) 685-740.
    [18] Michel Roux, Veronica Beswick et al. PMP1 18-38, A Yeast Plasma Membrane Protein Fragment, Binds Phosphatidylserine from Bilayer Mixtures with Phosphatidylcholine: A 2H-NMR Study. Biophysical Journal 79 (2000) 2624-2631.
    [19] Florence Mousson, Veronica Beswick et al.Concerted Influence of Key Amino Acids on the Lipid Binding Properties of a Single-Spanning Membrane Protein: NMR and Mutational Analysis. Biochemistry 40 (2001) 9993-10000.
    [20] Baeey R. Masters. Confocal microscopy and multiphoton excitation microscopy. First edition (2005).
    [21] JL Cordell, B Falini, et al. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase. Histochemistry and Cytochemistry 32 (1984) 219-229.
    [22] P. Michael Conn. Confocal microscopy, first edition (1999).
    [23] Pawley JB. Handbook of Biological Confocal Microscopy. Third edition(2006).
    [24] Prendergast F, Mann K. "Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskålea". Biochemistry 17 (1978) 3448–3453.
    [25] Tsien R. The green fluorescent protein . Annu Rev Biochem 67 (1998) 509–544.
    [26] Liana C. Silva, Rodrigo F. M. et al.Ceramide-Domain Formation and Collapse in Lipid Rafts: Membrane Reorganization by an Apoptotic Lipid. Biophysical Journal 92 (2007) 502-516.
    [27] Marks KM, Rosinov M, Nolan GP.In vivo targeting of organic calcium sensors via genetically selected peptides. Chemistry and Biology 11 (2004) 347-356.
    [28] Albani, J.R., Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies, Elsevier (2004).
    [29] Prabuddha Sengupta, Adam Hammond, David Holowka, Barbara Baird. Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles. Biochimica et Biophysica Acta 1778 (2008) 20–32.
    [30]http://www.avantilipids.com/index.php?option=com_content&view=article&id=1013&Itemid=215&catnumber=810145
    [31]http://www.invitrogen.com/site/us/en/home/support/Product-Technical-Resources/Product-Structures.-06134.html
    [32]http://www.invitrogen.com/site/us/en/home/support/Product-Technical-Resources/Product-Spectra.6390p72.html
    [33] M. I. Angelova and D. S. Dimitrov. Liposome electroformation.Faraday discuss 81 (1986) 303-311.
    [34] Pier Luigi Luisi and Peter Walde. Giant vesicles. first edition(1999).
    [35] Thomas Wollert1, Christian Wunder et al. Membrane scission by the ESCRT-III complex. Nature 458 (2009) 172-177.
    [36] Dag Scherfeld, Nicoletta Kahya, Petra Schwille. Lipid Dynamics and Domain Formation in Model Membranes Composed of Ternary Mixtures of Unsaturated and Saturated Phosphatidylcholines and Cholesterol. Biophysical Journal 85 (2003) 3758–3768.
    [37] Ming-Yen Ken. Phase behavior and molecular interactions of membranes containing phosphatidylcholines and sterol: A deuterium NMR study. M.S. thesis (2009).
    [38] Mousson F, et al. Deciphering the role of individual acyl chains in the interaction network between phosphatidylserines and a single-spanning membrane protein. Biochemistry 41 (2002) 13611-13616.
    [39] Perlin DS, et al. Membrane potential defect in hygromycin B-resistant pma1 mutants of Saccharomyces cerevisiae. J Biol Chem 263(1988) 18118-18122.
    [40] Catherine NavarreS, et al.Two Distinct Genes Encode Small Isoproteolipids Affecting Plasma Membrane H+-ATPase Activitoyf Saccharomyces cerevisiae. Journal of Biological Chemistry 269 (1994) 21262-21268.
    [41] Keiji Mitsui, et al. Saccharomyces cerevisiae Na+/H+ Antiporter Nha1p Associates with Lipid Rafts and Requires Sphingolipid for Stable Localization to the Plasma Membrane. Journal of Biochemistry145 (2009) 709–720.
    [42] Bagnat M, Chang A, Simons K. Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast. Molecular biology of the cell 12 (2000) 4129-4138.

    QR CODE
    :::