跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳佳秀
CHIA-HSIU CHEN
論文名稱: Annonaceous acetogenins中心結構之合成法
Synthetic Progress to Bis-Tetrahydrofuran Core of Annonaceous acetogenins
指導教授: 侯敦仁
Duen-Ren Hou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 97
語文別: 中文
論文頁數: 167
中文關鍵詞: 番荔枝科植物有機合成
外文關鍵詞: Annonaceous acetogenins
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用掌性的雙烯雙醇34當作起始物來合成Annonaceous acetogenins的中心結構-相鄰四氫呋喃33。首先利用亞甲基繫繩將雙烯雙醇34連接起來後,再將丙烯醇的烯轉換成環氧化物。接著進行環合置換反應建構出目標物的骨架。然後,將環合置換產物進行氫化以還原內烯。接下來預期將環氧化物進行脫氧反應,以還原成末端雙鍵,再進行亞甲基縮醛的水解和合環部分,而得到目標物33。


    Adjacent bis-tetrahydrofuran moiety 33 in Annonaceous acetogenins was synthesized using diene 34 as the strating material. Methylene acetal was used as the linker to connect diene 34. Then the epoxidation of allylic double bond was achieved. The ring-cross-metathesis (RCM) reaction between the remaining olefins provided the carbon skeleton of the target molecular. The internal double bond of the RCM product was hydrogenated. After the deoxygenation, hydrolysis of methylene acetal and cyclization, the target molecular 33 could be obtained.

    中文摘要…………………………………………………………………I 英文摘要…………………………………………………………………II 誌謝…………………………………………………………………III 總目錄…………………………………………………………………IV 流程圖目錄……………………………………………………………VI 圖目錄…………………………………………………………………VII 表格目錄……………………………………………………………VIII 方程式目錄…………………………………………………………IX 附圖目錄…………………………………………………………………XI 第一章 前言.............................................................................................1 1-1 “inside-out” 環氧連續反應建構出相鄰四氫呋喃...................4 1-2 氧化合環反應建構出相鄰四氫呋喃.........................................6 1-3 開環/交叉置換反應與鈀金屬催化進行不對稱環醚化反應................................................................................................8 1-4 “Outside-In” 環氧連續反應建構出相鄰四氫呋喃.........10 1-5 烯烴置換(olefin metathesis)反應的發展史概論...............12 1-6 催化劑中心金屬的特性...........................................................18 1-7 環閉合置換反應介紹...............................................................20 1-8 交叉置換(Cross Metathesis)反應介紹...............................22 1-9 研究動機...................................................................................26 第二章 結果與討論...............................................................................27 2-1 逆合成分析................................................................................27 2-1-1 直接CM反應與位置選擇性氫化................................27 2-1-2 繫繩後RCM反應與位置選擇性氫化.........................28 2-1-3 丙烯醇雙鍵轉換為環氧化物........................................29 2-2 起始物的合成...........................................................................29 2-3 建構目標物骨架.....................................................................33 2-3-1 直接CM反應................................................................33 2-3-2 矽作為繫繩 (Silicon as the tether)..........................35 2-3-3 碳酸酯作為繫繩(Carbonate as the tether)...............36 2-3-4 亞甲基作為繫繩(Methylene as the tether)..............38 2-4 位置選擇性氫化.....................................................................40 2-5 親核取代反應進行合環...........................................................44 2-6 丙烯醇雙鍵轉換為環氧化物與未來展望...............................46 第三章 結論...............................................................................................49 第四章 實驗...............................................................................................50 4-1 溶媒及處理過程.........................................................................50 4-2 實驗器材與儀器.........................................................................50 4-3 實驗步驟.....................................................................................52 第五章 參考文獻.......................................................................................82

    1 (a) Bermejo, A.; Figadere, B.; Zafra-Polo, M. C.; Barrachina, I.; Estornell, E.; Cortes, D. Nat. Prod. Rep. 2005, 22, 269–303. (b) McLaughlin, J. L. J. Nat. Prod. 2008, 71, 1311–1321. (c) McLaughlin, J. L.J. Nat. Prod. 1999, 62, 504-540.
    2 Jolad, S. D.; Cole, J. R. J. Org. Chem. 1982, 47, 3151-3153.
    3 Wu, Y. C.; Chang, F. R. Chemistry. 1995, 53, 76-93.
    4 (a) Landolt, J. L.; Ahammadsahib, K. I.; Hollingworth, R. M.; Barr, R.; Crane, F. L.; Buerck, N. L.; McCabe, G. P.; McLaughlin, J. L. Chem. Biol. Interact. 1995, 98, 1-13. (b) Gonza´lez, M. C.; Lavaud, C.; Gallardo, T.; Zafra-Polo, M. C.; Cortes, D. Tetrahedron 1998, 54, 6079–6088.
    5 Hoye, T. R. J. Am. Chem. Soc. 1991, 113, 9369-9371.
    6 Hoye, T. R. J. Am. Chem. Soc. 1996, 118, 1801-1802.
    7 (a) Amberg, W.; Bennani, Y.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morkkawa, K.; Wang, Z.-M.; Xu, D.; Shang, X.-L.; Sharpless, K. B. J. Org. Chem. 1992, 57, 2768. (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.1994, 94, 2483.
    8 Brown, R. C. D. J. Org. Chem. 2009, 74, 981–988.
    9 Burke, S. D. Org. Lett. 2006, 8, 5637-5640.
    10 Marshall, J. A. Org. Lett. 2006, 8, 3557-3560.
    11 (a) Das, S.; Li, S.; Abraham, S.; Chen, Z.; Sinha, S. C. J. Org. Chem. 2005, 70, 5922. (b) Avedission, H.; Sinha, S. C.; Yazbek, A.; Sinha, A.; Neogi, P.; Sinha, S. C.; Keinan, E. J. Org. Chem. 2000, 65, 6035.
    12 Rouhi, A. M. CE&E, 2002, 80, 34-38.
    13 Yates, P. J. Am. Chem. Soc. 1952, 74, 5376-5381.
    14 Anderson, A. W.; Merckling, N. G. Chem. Abstr. 1956, 50, 3008.
    15 Banks, R. L. and Bailey, G. C. Ind. Eng. Chem. Pro. Res. Dev. 1964, 3, 170.
    16 Calderon, N.; Ofstead, E. A.; Ward, J. P. and Scott, K. W. Tetrahedron Lett. 1967, 34, 3327.
    17 Calderon, N.; Ofstead, E. A.; Ward, J. P.; Judy, W. A.; Scott, K. W. J. Am. Chem. Soc. 1968, 90, 4133-4140.
    18 (a) Herisson, J.-L.; Chaurin, Y. Makromol. Chem. 1971, 161-167. (b) Grubbs, R. H.; Carr, D. D.; Hoppin, C.; Burk. P. L. J. Am. Chem. Soc. 1976, 98, 3478-3483. (c) Grubbs, R. H.; Burk. P. L.; Carr, D. D. J. Am. Chem. Soc. 1975, 97, 3265-3267.
    19 Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29.
    20 Lappert, M. F. Chem. Commun. 1972, 927.
    21 Biefeld, C. G.; Elck, H. A.; Grubbs, R. H. Inorg. Chem. 1973, 12, 2166-2170.
    22 Chauvin, Y. C. R. Acad. Sci. Paris. 1973, 276, 169.
    23 Rebek, J.; Gavina, F. J. Am. Chem. Soc. 1975, 97, 1592-1594.
    24 Schrock, R. R. J. Mol. Catal. 1980, 8, 73.
    25 Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 3932-3934.
    26 Katz, T. J.; Sivavec, T. M. J. Am. Chem. Soc. 1985, 107, 737-738.
    27 Schuster, M; Blechert, S. Angew. Chem. Int. Ed. Engl. 1997, 36, 2036-2056.
    28 Nguyen, S. T.; Johnson L. K.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 107, 3974-3975.
    29 Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem. Int. Ed. Engl. 1995, 34, 2039-2041.
    30 Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.
    31 Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791-799.
    32 Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-8179.
    33 Traka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-39.
    34 (a) Schuster, M.; Blechert, S. Angew. Chem. Int. Ed. Engl. 1997, 36, 2036-2056. (b) Schmalz, H.-G. Angew. Chem. Int. Ed. Engl. 1995, 34, 1833-1836. (c) Armatrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371-388. (d) Grubbs, R. H.; Chang, S. Tetrahedron. 1998, 54, 4413-4450.
    35 Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360-11270.
    36 Brummer, O.; Ruckert, A.; Blechert, S. Chem-Eur. J. 1997, 3, 441-444.
    37 Crowe, W. E.; Zhang, Z. J. J. Am. Chem. Soc. 1993, 115, 10998-10999.
    38 (a) Bols, M.; Skrydstrup, T. Chem. Rev. 1995, 95, 1253-1277. (b) Evans, P. A. J. Org. Chem. 1998, 63, 6768-6769. (c) Brown R. C. D. Org. Lett.
    2008, 10, 2489-2492. (d) Evans, P. A. J. Am. Chem. Soc. 2003, 125, 14702-14703. (e) Hoye, T. R. Org. Lett. 2006, 8, 3383-3386.
    39 (a) Coleman, R. S.; Kong, J-S. J. Am. Chem. Soc. 1998, 120, 3538. (b) Trost, B. M. J. Am. Chem. Soc. 2005, 127, 17921-17937.
    40 (a) Gable, K. P. Synlett 2003, 14, 2243–2245. (b) Yoo, B. W. Bull. Korean Chem. Soc. 2005, 26, 1495.
    41 Burke, S. D.; Sametz, G. M. Org. Lett. 1999, 1, 71-74.
    42 Quinn, K. J.; Isaacs, A. K.; DeChristopher, B. A.; Szklarz, S. C.; Arvary, R. A. Org. Lett. 2005, 7, 1243-1245.
    43 Kusumoto, S. J. Org. Chem. 1996, 61, 4469-4471.
    44 Hanson, P. R. J. Org. Chem. 2000, 65, 7913-7918.
    45 Fu1rstner, A.; Langemann, K. J. Am. Chem. Soc. 1997, 119, 9130-9136.
    46 Harris, R. N. J.Org. Chem. 1986 ,51, 4711-4714.
    47 Schmidt, B.; Nave, S. Adv. Synth. Catal. 2007, 349, 215–230.
    48 Acc. Chem. Res. 1981, 14, 95.
    49 Kocˇevar, M. Carbohydrate Research, 2006, 341, 897–902.
    50 (a) Evans, D. A.; Hoveyda, A. H. Chem. Rev. 1083, 93, 1307-1370. (b) Rodrı’guez, M.; Llobet, A.; Leeuwen, P. W.N.M. Catalysis Commun., 2008, 9, 117–119. (c) Vranken, D. L. V. J. Org. Chem. 2001, 66, 7270-7274.
    51 (a) Hudlicky, T. Tetrahedron Lett. 2007, 48, 3979–3981. (b) Wender, P. A. J. Am. Chem. Soc. 1997, 119, 2755-2756. (c) Noyori, R.; Takaya, H. J. Am. Chem. Soc. 1987, 109, 1596-1597. (d) Roush, W. R. Org. Lett. 2005, 7,1411-1414.
    52 Behan, J. M.; Johnstone, R. A. W.; Wright, M. J. J. Chem. Soc.,Perkin Trans. 1 1975, 1216, 1217.

    QR CODE
    :::