| 研究生: |
蘇聖元 Sheng-yuan Su |
|---|---|
| 論文名稱: |
應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進 Stability improvement of a phase-detection-based surface-plasmon-resonance system by using phase shifting interferometry with a random-shift tolerant algorithm |
| 指導教授: |
陳怡君
Yi-chun Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 相移干涉術 、表面電漿共振 、隨機相移 |
| 外文關鍵詞: | phase-shifting interferometry, surface-plasmon-resonance, random phase-shift |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以增進相位式表面電漿共振系統之穩定度為目的,以可容忍隨機相移之相移干涉術取代原來的五步相移法,解決磁滯效應以及其它會造成相移擾動的外在干擾增進系統之穩定度。目前本論文所使用的演算法可容忍的隨機相移的平均誤差量約在
0.0019waves,兼且能夠解決原來的五步相移法所遇到的電壓反折訊號所造成的干擾,以及雷射光的高斯光源無法在可容忍隨機相移之相移干涉術計算的問題。實驗上先以Twyman-Green干涉儀進行高斯光源的干涉實驗,實驗結果相移誤差量約為0.0031waves,在SPR(Surface Plasmon Resonance表面電漿共振)系統將通入純水來進行系統穩定度的量測,在通入純水的情況下,量測系統300秒所得到的系統穩定度約為0.044radians,較原來的五步相移法穩定度0.065radians來的精準,將新的演算法引入SPR系統進行相位計算最主要可解決原來五步相移法遇到反折點解相錯誤的問題,並略為增加系統的穩定度。
Stability improvement of a phase-detection-based surface-plasmon-resonance system is the topic in this thesis.By using phase-shifting interferometry with a random-shift tolerant algorithm replace five steps algorithm to solve Hysteresis effect and the other something would influence phase-shift to improve stability of system.Currently random-shift tolerant algorithm in this thesis, the mean error was 0.0019 waves and also to solve the problem that the triangle signal the five steps algorithm cann’t deal with and the phase-shifting interferometry with a random-shift tolerant algorithm cann’t deal with the Gaussion beam of laser.Using Twyman-Green interferometer to do the Gaussion beam interference experiment. The resulting mean error of phase-shift was 0.031 waves.In SPR(Surface Plasmon Resonnace) system,it would enter the water to measure stability of the system.In entering water condition, the stability was 0.044radians in 300-second period .It was also better than 0.065radians the result was calculated by five steps algorithm.To using the new algorithm in SPR system deal with the major problem that the triangle signal five steps algorithm cann’t do and improve the stability slightly.
[1] T. W. Stuhlinger, "Subaperture optical testing experimental verification," Proc. SPIE 656,118-127 (1986).
[2]林柏至, "非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發," 國立中央大學光電科學與工程學系碩士論文(2011).
[3] Z. Wang and B. Han, "Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms," Opt. Lett. 29,1671-1673(2004).
[4]顏嘉宏, "表面電漿共振系統之相位擷取與分析," 國立中央大學光電科學研究所碩士論文(2009).
[5] P.Carre’, "Phase Shifing Interferometry," in Optical Shop Testing, D.Malacara ed.3 (Wiley-Interscience, Hoboken, New Jersey, 2007).
[6] P. Hariharan, B.F. Oreb, and T. Eiju, "Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm," Appl. Opt.
26(13), 2504-2506 (1987).
[7] J. Greivenkamp, "Generalized data reduction for heterodyne Interfer-Omtry," Opt. Eng. 23, 350-352 (1984).
[8] K. Okada, A. Sato, and J. Tsujiuchi, "Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometry," Opt. Commun. 84, 118-124 (1991).
[9] G. Lassahn, J. Lassaahn, P. Taylor, and V. Deason, "Multiphase fringe analysis with unknown phase shifts," Opt.Eng. 33(6), 2039-2044 (1994).
[10] G. S. Han and S. W. Kim, "Numerical correction of reference phases in phase-shifting interferometryby iterative least-squares fitting," Appl. Opt. 33, 7321-7325 (1994).
[11] S. W. Kim, M. Kang, and G. S. Han, "Accelerated phase measuring algorithm of least squares for phase shifting interferometry," Opt. Eng. 36(11), 3101-3106 (1997).
[12] C. Wei, M. Chen, and Z.Wang, "General phase-stepping algorithm with automatic calibration of phase steps," Opt. Eng. 38(8), 1357-1360 (1999).
[13] 盧立瑋, "相位移動器校正之研究,"國立中央大學光電科學研究所碩士論文 (2006).
[14] .D. Malacara,"Phase Shifing Interferometry, " in Optical Shop Testing, D. Malacara ed.3 (Wiley-Interscience, Hoboken, New Jersey, 2007).
[15] A. Sommerfeld, "Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie," Annalen der Physik, vol. 28, pp. 665-736, (1909).
[16] C. J. Powell and J. B. Swan, "Effect of oxidation on the characteristics loss spectra of aluminum and magnesium," phys. Rev., vol. 118, pp. 640-643,
(1960).
[17] 林萱,"利用相位式表面電漿共振系統檢測免疫球蛋白鍵結之應用分析," 國立中央大學光電科學研究所碩士論文(2012)
[18] A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection," Z. Physik, vol. 216, pp. 398-410, (1968).
[19] E. Krestschmann, "The determination of the optical constants of metals by excitation of surface plasmons," Z. Physik, vol. 241, p. 313, (1971).
.
[20] M. A. Cooper, "Optical biosensors in drug discovery, " Nat. Rev. Drug. Discov, vol. 1, pp. 515-528, (2002).