| 研究生: |
蔡尚鏞 Shang-Yung Tsai |
|---|---|
| 論文名稱: |
氫氣在甲苯、冰片烯及COC混合溶液 Solubility of Hydrogen in Mixtures of Toluene, Norbornene, and Cyclic Olefin Copolymer at Various Temperature and Pressures |
| 指導教授: |
李亮三
Liang-Sun Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 熱穩定性 、溶解度 、關聯 |
| 外文關鍵詞: | gas solubility |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
光電產業持續成長,新穎技術及新材料需求不斷更新;光學高分子於光電產業用途日漸廣泛與受重視。而環烯烴共聚合物(metallocene catalyzed cyclo-olefin copolymer, COC)材料因具優異之光學特性,宜發展為光學材料。本研究氫-乙烯-冰片烯反應後之產物為環烯烴共聚合物的一種,製程為氫及乙烯在甲苯為溶劑下與冰片烯(norbornene)反應產生COC。明顯的,氫及乙烯在甲苯的溶解度將影響COC的產率及性質。因此本研究將探討不同操作條件下,氫氣之溶解度,再以熱力學模式進行關聯,以增加對未知條件下之預測能力。
本研究為討論不同溫度、壓力下,氫氣在甲苯、冰片烯及COC混合液中溶解情形。實驗將進行在溫度為323.15 K, 373.15 K及423.15 K,壓力為500 kPa(5 bar)至2500 kPa(5 bar),混合液中冰片烯含量0 wt%至85 wt%,mCOC含量0 wt%至28 wt%之條件下。實驗方法將採用靜態式法。利用平衡槽之壓力變化決定系統之平衡。實驗結果發現氫氣在上述混合溶液中的溶解度將隨壓力上升而增加,但隨溫度上升而下降;不同溫度下,甲苯與冰片烯混合溶液組成比例的不同對氫氣溶解度的影響情形將有所不同;混合溶液中COC的含量增加時,將會使氫氣的溶解度下降。
所得之實驗數據本研究使用 Peng-Robinson 狀態方程式並配合凡得瓦單一流體混合律及Zhong-Masuoka混合律,計算方式採用泡點壓力計算法,進行數據關聯,並求得最佳之雙成分交互作用參數。
Abstract
In this study, the solubilities of hydrogen in mixtures of toluene, norbornene, and cyclic olefin copolymer (COC) were measured at various temperatures (between 323.15 and 423.15 K), pressures (between 5 and 25 bar), concentrations of norbornene (between 0 and 85 wt %), and concentrations of COC (between 0 and 40 wt %). The experiments were conducted by the pressure decaying method using a newly designed apparatus. The experimental results show that the solubility of hydrogen increases with increasing system pressure but decreases with increasing system temperature in the above mixture. Another interesting observation is that the solubility decreases when the concentration of reaction product, COC, is increased. Thus, in addition to temperature and pressure, the COC concentration affects the reaction extent, and beyond a certain COC concentration, further reaction favoring COC generation is impossible because of the opposite effect on hydrogen solubility.
Also, in this study, the experimental solubility data were expressed in vapor-liquid equilibrium relationship and correlated by bubble-pressure calculations with the Peng-Robinson equation of state incorporating the modified van der Waals one-fluid(vdW-1) mixing rules and the Zhong-Masuoka mixing rules, including the consideration of binary interaction parameters. The average absolute deviation percentages (AAD) of the correlation are less than 7 %, except that of pressure with the Z-M mixing rules.
參考資料
Anderson, T. F. and J. M. Prausnitz, “Application of UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. 1. Vapor-Liquid Equilibria,” Ind. Eng. Chem. Process. Des. Dev., 1978, 17, pp.552-561
ASPEN PLUS Reference Manual, version 10.1; Aspen-Tech:Cambridge, MA, 2000.
Atiqullah, M., H. Hammawa, and H. Hamid, “Modeling the Solubility of Ethylene and Propylene in a Typical Polymerization Diluent:Some Selected Situations,” Eur. Polym. J., 1998, 34, pp.1511-1520
Beaton, C. F., and G. F. Hewitt, “Physical Property Data for the Design Engineer,” Hemisphere, New York, 1989
Behme, S., G. Sadowski, and W. Arlt, “Modeling of the Separation of Polydisperse Polymer Systems by Compressed Gases,” Fluid Phase Equil., 1999, 158-160, pp.869-877
Benedict, M., G. B. Webb, and L. C. Rubin, “An Empirical for Thermodynamic Properities of Light Hydrocarbons,” J. Chem. Phys., 1940, 8, pp.334-352
Benzaghou, S., J. P. Passarello, and P. Tobaly, ”Predictive Use of a SAFT EOS for Phase Equilibria of Some Hydrocarbons and Their Binary Mixtures,” Fluid Phase Equil., 2001, 180, pp.1-26
Beret, S., and J. M. Prausnitz, “Perturbed Hard-Chain Theory:An Equation of State for Fluids Containing Small or Large Molecules,” AIChE J., 1975, 21, pp.1123-1132
Bergström, C. H., and J. V. Seppälä, “Effects of Polymerization Conditions When Making Norbornene-Ethylene Copolymers Using the Metallocene Catalyst Ethylene Bis(indenyl) Zirconium Dichloride and MAO to Obtain High Glass Transition Temperature,” J. App. Polym. Sci., 1997, 63, pp.1063-1070
Bogdanović, V. Ž., A. Ž. Tasić, and B. D. Djordjević, “Inversion Phenomena of Ethylene Solubility in Polyethylene,” J. App. Polym. Sci., 1990, 41, pp.3091-3095
Elbro, H. S., A. Fredenslund, and P. Rasmussen, “Group Contribution Method for the Prediction of Liquid Densities as a Function of Temperature for Solvents, Oligomers, and Polymers,” Ind. Eng. Chem. Res., 1991, 30, pp.2576-2585
Fischer, K., O. Noll, and J. Gmehling, “Experimental Determination of the Oxygen Solubility in Benzene,” J. Chem. Eng. Data, 2001, 46, pp. 1504-1505
Folie, B., C. Gregg, G. Luft, and M. Radosz, “Fluid Equilibria of Poly(Ethylene-co-Vinyl Acetate) Copolymers in Subcritical and Supercritical Ethylene and Ethylene-Vinyl Acetate Mixtures,” Fluid Phase Equil., 1996, 120, pp.11-37
Ghosh, A. W. G. Chapman, and R. N. French, “Gas Solubility in Hydrocarbons
-- a SAFT-Based Approach,” Fluid Phase Equilibria, 2003, 209, pp.229-243
Graboski, M. S. and T. E. Daubert, “A Modified Soave Equation of State for Phase Equilibrium Calculation. 1. Hydrocarbon Systems,” Ind. Eng. Chem., 1978, 17, pp.442-451
Josés, V. H., and Z. Artur, “Gas-liquid Solubility of Hydrogen in n-Alcohols (1≦n≦4) at Pressure from 3.6 MPa to 10MPa and Temperatures from 298.15 K to 525.15 K,”J. Chem. Eng. Data, 2001, 46, pp 671-674
King, M. B., D. A. Alderson, F. H. Fallah, D. M. Kassim, K. M. Kassim, J. R. Sheldon, and R. S. Mahmud, “Some Vapour/Liquid and Vapour/Solid Equilibrium Measurements of Releaevance for Supercritical Extraction Operations, and Their Correlation,” in Paulaitis, M. E., J. M. L. Penninger, R. D. Gray, and J. P. Davidson (Eds.),”Chemical Engineering at Supercritical Fluid Conditions,” Ann Arbor Science, 1983, pp.31-80
Kontogeorgis, G. M., V. I. Harismiadis, A. Fredenslund, and D. P. Tassios, “Application of van der Waals Equation of State to PolymersⅠ:Correlation,” Fluid Phase Equil., 1994, 96, pp.65-92
Lee, B. I. and M. G. Kesler, “A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding State,” AIChE J., 1975, 21, pp.510-521
Lee, L. S., R. F. Shih, H. J. Ou, and T. S. Lee, “Solubility of Ethylene in Mixture of Toluene, Norbornene, and Cyclic Olefin Copolymer at Various Temperatures and Pressures,” Ind. Eng. Chem. Res. 2003, 42, pp.6977-6985
Li, J., Z. Tekie, T. I. Mizan, B. I. Morsi, E. E. Maier, and C. P. P. Singh, “Gas-Liquid Mass Transfer in a Slurry Reactor Operating Under Olefinic Polymerization Process Conditions,” Chem. Eng. Sci., 1996, 51, pp.549-559
Liu, J. L., and D. S. H. Wong, “Application of Wong-Sandler Mixing Rules to Polymer Solutions,” Fluid Phase Equil., 1996, 117, pp.92-99
Louli, V., and D. Tassios, “Vapor-Liquid Equilibrium in Polymer-Solvent Systems With a Cubic Equation of State,” Fluid Phase Equil., 2000, 168, pp.165-182
Michelsen, M. L., “A Method for Incorporating Excess Gibbs Energy Models in Equation of State,” Fluid Phase Equil., 1990, 60, pp.47-58
Mizan, T. I., J. Li, B. I. Morsi , M. Y. Chang, E. Maier, and C. P. P. Singh, “Solubilities and Mass Transfer Coefficients of Gases in Liquid Propylene in Surface-Aeration Agitated Reactor,” Chem. Eng. Sci., 1994, 49, pp.821-830
Ng, H. J., and D. B. Robinson, “Equilibrium Phase Properties of the Toluene-Carbon Dioxide System, ” J. Chem. Eng. Data, 1978, 23, pp.325-327
Nishiumi, H., and S. Saito, “An Improved Generalized BWR Equation of State Applicable to Low Reduced Temperature,” J. Chem. Eng. Japan, 1975, 8, pp.356-360
Orbey, N., and S. I. Sandler, “Vapor-Liquid Equilibrium of Polymer Solution Using a Cubic Equation of State,” AIChE J. 1994, 40, pp.1203-1210
Patel, N. C., and A. S. Teja, “A New Cubic Equation of State for Fluids and Fluid Mixtures,” Chem. Eng. Sci., 1982, 37, pp.463-473
Peng, D. Y., and D. B. Robinson, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam., 1976, 15, pp.59-64
Perry, R. H., and D. Green, “Perry’s Chemical Engineering’s Handbook, 6th,” McGraw-Hill, New York, 1984
Petrova, E., C. Crampon, E. Ali, E. Neau, and E. Badens,” Solubility of CO2 in Some Heavy Alcohols and Correlation of Phase Equilibrium,” Fluid Phase Equilibria, 2003, 213, pp.153-162
Phiong, H. S., and F. P. Lucien, “Solubility of Hydrogen in α-Methylstryene and Cumene at Elevated Pressure,” J. Chem. Eng. Data, 2002, 47, pp 474-477
Pitzer, K. S., D. Z. Lippmann, R. F. Curl, Jr., C. M. Huggins, and D. E. Petersen, “The Volumetric and Thermodynamic Properties of Fluids Ⅱ. Compressibility Factor, Vapor Pressure and Entropy of Vaporization,” J. Am. Chem. Soc., 1955, 77, pp.3427-3438
Prausnitz, J. M., W. C. Edmister, and K. C. Chao, ”Hydrocarbon Vapor-Liquid Equilibria and Solubility Parameter,” AIChE J., 1960, 6, pp.214-223
Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo, “Molecular Thermodynamics of Fluid-Phase Eqilibria, 2nd ed.,” Prentice-Hill, Englewood Cliffs, N. J.,1986
Prausnitz, J. M., and F. H. Shair, AIChE J., 1961, 7, pp.682
Radhakrishnan, K., P. A. Ramachandran, P. H. Brahme, and R.V. Chaudharl, “Solubility of Hydrogen in Methanol, Nitrobenzene, and Their Mixture. Experimental Data and Correlation” J. Chem. Data, 1983, 28, pp1-4
Redlich, O., and J. N. S. Kwong, “On the Thermodynamics of Solutions. Ⅴ:An Equation of State. Fugacities of Gaseous Solutions,” Chem. Rev., 1949, 44, pp.233-244
Reid, R. C., J. M. Prausnitz, and B. E. Poling, “The Properties of Gases and Liquids , 4th, Appendix A:Property Data Bank,” McGraw-Hill, 1987
Ruchatz, D., and G. Fink, “Ethene-Norbornene Copolymer Using Homogenous Metallocene and Half-Sandwich Catatlyst : Kinetics and Relationships between Catalyst Structure and Polymer Structure. 1. Kinetics of the Ethene-Norbornene Copolymeerization Using the [(Isopropylidene)(η5-inden-1-ylidene-η5-cyclopentadienyl)]zirconium Dichloride/Methylaluminoxane Catalyst,” Macromolecules, 1998a, 31, pp.4669-4673
Ruchatz, D., and G. Fink, “Ethene-Norbornene Copolymer Using Homogenous Metallocene and Half-Sandwich Catatlyst : Kinetics and Relationships between Catalyst Structure and Polymer Structure. 2. Comparative Study of Different Metallocene- and Half-Sandwich /Methylaluminoxane Catalysts and Analysis of the Copolymer by 13C Nuclear Magnetic Resonance Spectroscopy,” Macromolecules, 1998b, 31, pp.4674-4680
Ruchatz, D., and G. Fink, “Ethene-Norbornene Copolymer Using Homogenous Metallocene and Half-Sandwich Catatlyst : Kinetics and Relationships between Catalyst Structure and Polymer Structure. 3. Copolymerization Parameters and Copolymerization Diagrams,” Macromolecules, 1998c, 31, pp.4681-4684
Ruchatz, D., and G. Fink, “Ethene-Norbornene Copolymer Using Homogenous Metallocene and Half-Sandwich Catatlyst : Kinetics and Relationships between Catalyst Structure and Polymer Structure. 4. Development of Molecular Weights,” Macromolecules, 1998d, 31, pp.4685-4686
Sanchez, I. C., and R. H. Lacombe, “An Elementary Molecular Theory of Classical Fluids. Pure Fluid.,” J. Phys. Chem., 1976, 80, pp.2352-2362
Sandler, S. I., “Chemical and Engineering Thermodynamics, 3rd,” Wiley, 1999
Saraiva, A., G. M. Kontogeorgis, V. I. Harismiadis, A. Fredenslund, and D. P. Tassios, “Application of van der Waals Equation of State to Polymers Ⅳ:Correlation and Prediction of Lower Critical Solution Temperatures for Polymer Solutions ,” Fluid Phase Equil., 1996, 115, pp.73-93
Sato, Y., K. Fujiwara, T. Takikawa, Sumarno, S. Takishima, and H. Masuoka, “Solubilities and Diffusion Coefficients of Carbon Dioxide and Nitrogen in Polypropylene, High-Density Polyethylene, and Polystyrene under High Pressures and Temperatures,” Fluid Phase Equil., 1999, 162, pp.261-276
Sato, Y., M. Yurugi, K. Fujiwara, S. Takishima, and H. Masuoka, “Solubilities of Carbon Dioxide and Nitrogen in Polystyrene under High Temperature and Pressure,” Fluid Phase Equil., 1996, 125, pp.129-138
Simnick, J. J., H. M. Sebastian, H. M. Lin, and K. C. Chao, “Solubility of Hydrogen in Toluene at Elevated Temperature and Pressure,” J. Chem. Eng. Data, 1978, 23, pp. 339-340
Soave, G., “Equilibrium Constants from a Modified Redlich-Kwong Equation of State,” Chem. Eng. Sci., 1972, 27, pp.1197-1207
Tan, Z. Q., G. H. Gao, Y. X. Yu, and C. Gu, “Solubility of Oxygen in Aqueous Sodium Carbonate Solution at Preaaure up to 10MPa,”Fluid Phase Equilibria, 2001, 180, pp375-382
Tasibanogiannis, I. N., K. S. Kalospiros, and D. P. Tassios, “Extension of the GCVOL Method and Appliciation to Some Complex Compounds,” Ind. Eng. Chem. Res., 1994, 33, pp.1641-1643
Teja, A. S., “A Corresponding-State Equation for Saturated Liquid Densities.Ⅰ. Applications to LNG,” AIChE J., 1980, 26, pp.337-345
Tyvina, T. N., A. A. Naumova, and S. A. Polyakov, “Critical Effects and Phase and Volume Behavior of Ethylene in Toluene,” J. App. Chem. Ussr, 1979, 52, pp.910-913
Wilson, G. M., “Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing,” J. Am. Chem. Soc., 1964, 86, pp.127-130
Wong, D. S. H., and S. I. Sandler, “A Theoretically Correct Mixing Rule for Cubic Equation of State,” AIChE J., 1992, 38, pp.671-680
Zhong C., and H. Masuoka, “A New Mixing Rule for Cubic Equation of State and its Application to Vapor-Liquid Equilibria of Polymer Solutions,” Fluid Phase Equil., 1996a, 123, pp.59-69
Zhong C., and H. Masuoka, “Prediction of Henry’s Constants for Polymer-Containing Systems using the SRK Equation of State Coupled with a New Modified UNIFAC Model,” Fluid Phase Equil., 1996b, 126, pp.1-12
Zhong C., and H. Masuoka, “Modeling of Gas Solubilities in Polymers with Cubic Equation of State,” Fluid Phase Equil., 1998, 144, pp.49-57
李育德, 顏文義, 莊祖煌, “聚合物物性, ” 高立圖書, 民國85年
洪士民, “高溫高壓下二氧化碳-正烷基梭酸雙成分系統之氣液相平衡,” 國立成功大學化學工程研究所碩士論文, 台南, 民國86年
黃辰寶, “高溫高壓下之氣液相平衡—甲烷與重正烷烴之雙成分系統,” 國立成功大學化學工程研究所碩士論文, 台南, 民國79年
楊思廉, “工業化學概論, 第十三章 塑膠工業,” 高立圖書, 民國71年
鄭孟勳, “以有機茂金屬觸媒合成丙烯-原乙烯之COC共聚物及其物性探討,” 國立中央大學化學研究所碩士論文, 中壢, 民國89年