跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴建融
Jian-rung Lai
論文名稱: ZnS:Mn2+量子點合成與水性分散
指導教授: 蔣孝澈
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: 硫化鋅量子點水性分散
外文關鍵詞: ZnS, QDs, water-soluble
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗的目的在開發一種高產量的水溶性ZnS:Mn2+量子點製程。我們將高濃
    度的氯化鋅與硫化鈉水溶液逐滴加入當作緩衝溶液的乙二醇中,並控制反應時的
    pH 值,會得到白色不透明的硫化鋅。將沉澱物用去離子水清洗後,離心取出沉
    澱物,進行XRD 作晶體鑑定,可以確定產物為硫化鋅的閃鋅礦(zinc-blend)結構。
    從結晶峰的半高寬估計其晶粒大小在2~4nm 之間。我們也發現在酸性中合下的
    產物,粒子粒徑分佈較窄且小。
    將上述清洗過之硫化鋅產物,再利用MPA 於水溶劑中進行改質,可得到
    ZnS:Mn2+@MPA 水溶性量子點。此一量子點可分散在pH=6~11 的水中呈現透明狀。
    由UV-abs 的起始吸收波長可計算出結晶大小在4~7nm 之間。而TEM 觀察的結果
    也顯示出單顆結晶大小在5~7nm。
    我們也嘗試了在不同的鋅硫比例下進行反應,發現在硫原子過量的情況下,
    結晶會變大且會降低420nm 的藍光放射。另外,也試著將MPA 在合成的過程中加
    入。使MPA 不僅當做改質劑,也當作保護劑使用。在鹼性合成(pH>10.8)下,MPA
    的硫醇基團會解離,而與鋅有較強鍵結能力。但添加有MPA 並且在鹼性下進行反
    應者,硫化鋅產物之結晶性會大幅降低。同樣先添加MPA 而在酸性下合成者,XRD
    繞射強度較高,且UV-abs 也有相當明顯的吸收峰。從起始吸收波長計算出的結
    晶大小為3.7nm。所以整體而言,應該在酸性條件下進行硫化鋅沉澱才可以獲得
    較小及較整齊之結晶。


    The purpose of this research is to develop a low-cost, low environmental impact,
    and high yield of ZnS: Mn2 + QDs process. ZnS: Mn2 + QD were successfully prepared
    by neutralizing aqueous solution of zinc chloride and sodium sulfide under controlled
    the pH value. Using XRD to identify the crystal shows that the product was ZnS
    sphalerite (zinc-blend) structure, whose domain size is only 2~3nm calculated from
    the power XRD peak width.
    ZnS: Mn2 + QD was washed by deionized water, centrifuged out the sediment,
    and modified by MPA aqueous. The obtained ZnS: Mn2 +@ MPA QDs can be
    dispersed in water. The transparent dispersed solution crystal size also calculated by
    on-set of the UV-abs absorption, it shows that crystal size was between 4 ~ 7nm.
    TEM observation also showed that the size of a single crystal in 5 ~ 7nm.
    We also tried to add different ratio of Zn/S. We found that when sulfur atoms
    were excess, it will cause crystal size became larger and reduces the 420nm blue light
    radiation. We not only use the MPA as a modifier, but also try to add it as a protective
    agent during synthesis process.
    Although the pH value of synthesis under the alkaline (pH> 10.8), MPA will
    dissociate its thiol groups and enhance its bonding ability. However, we found that
    will significantly reduce the crystallization of zinc sulfide. But under acid synthesis,
    XRD showed that the larger diffraction intensity. UV-abs also had quite obvious
    absorption peak, calculated by on-set of the UV-abs absorption, crystal size was
    3.7nm.

    摘要...............................................................................................................................I ABSTRACT.................................................................................................................. II 目錄.............................................................................................................................III 圖目錄..........................................................................................................................V 表目錄....................................................................................................................... VII 第一章 緒論.................................................................................................................1 1.1 前言....................................................................................................................1 1-1.1 硫化鋅材料簡介..........................................................................................1 1-1.2 奈米粒子與量子點......................................................................................3 1-1.3 量子點之應用..............................................................................................4 1-2 文獻回顧.............................................................................................................5 1-2.1 量子點的合成..............................................................................................5 1-2.2 量子點發展史..............................................................................................6 1-2.3 硫化鋅量子點..............................................................................................7 1-2.4 親水性量子點..............................................................................................9 1.3 研究目的............................................................................................................12 第二章 硫化鋅製備與改質.......................................................................................14 2-1 硫化鋅製備前言...............................................................................................14 2-2 硫化鋅製備.......................................................................................................15 2.3 硫化鋅表面改質...............................................................................................17 2.4 直接在合成過程中加入MPA 的嘗試...............................................................19 2.5 實驗藥品...........................................................................................................20 2-6 儀器分析...........................................................................................................21 第三章 結果與討論...................................................................................................24 IV 3-1 合成硫化鋅條件之選擇...................................................................................24 3-1.1 緩衝液、加熱時間及清洗方式的選擇....................................................24 3-1.2 反應pH 值的選擇.....................................................................................28 3-1.3MPA 改質方法的比較................................................................................32 3-1.4 鋅硫比的影響...........................................................................................46 3.2 直接在合成過程中加入MPA 的嘗試............................................................48 第四章 結論與建議...................................................................................................51 Reference……………………………………………………………………...……...53 附錄ㄧ 實驗步驟整理...............................................................................................57 不同的PH 下進行中和(水、乙二醇)....................................................................57 使用乙二醇當作緩衝溶液......................................................................................57 中和液改質MPA(酸性改質)...................................................................................59 中和液水洗產物改質MPA(酸性改質)...................................................................59 中和液水洗產物改質MPA(鹼性改質)...................................................................59 鋅硫添加比例..........................................................................................................61 將MPA 放入緩衝液中使用......................................................................................61 將MPA 放入鋅源中使用..........................................................................................62 參考ZHUANG 的做法13 ..........................................................................................62 附錄二 實驗使用之藥品...........................................................................................64 附錄三 實驗使用之分析儀器...................................................................................65

    1. Steigerwald, M. L.; Brus, L. E. Semiconductor crystallites: a class of large
    molecules. Accounts of Chemical Research 1990, 23 (6), 183-188.
    2. Han, M.; Gao, X.; Su, J. Z.; Nie, S. Quantum-dot-tagged microbeads for
    multiplexed optical coding of biomolecules. Nature Biotechnology 2001, 19 (7),
    631.
    3. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of
    nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor
    nanocrystallites. Journal of the American Chemical Society 1993, 115 (19),
    8706-8715.
    4. Mews, A.; Eychmueller, A.; Giersig, M.; Schooss, D.; Weller, H. Preparation,
    characterization, and photophysics of the quantum dot quantum well system
    cadmium sulfide/mercury sulfide/cadmium sulfide. The Journal of Physical
    Chemistry 1994, 98 (3), 934-941.
    5. Hines, M. A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly
    Luminescing ZnS-Capped CdSe Nanocrystals. The Journal of Physical
    Chemistry 1996, 100 (2), 468-471.
    6. Peng, Z. A.; Peng, X. Formation of High-Quality CdTe, CdSe, and CdS
    Nanocrystals Using CdO as Precursor. Journal of the American Chemical
    Society 2000, 123 (1), 183-184.
    7. Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of
    manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 1994, 72 (3), 416.
    8. Gan, L. M.; Liu, B.; Chew, C. H.; Xu, S. J.; Chua, S. J.; Loy, G. L.; Xu, G. Q.
    Enhanced Photoluminescence and Characterization of Mn-Doped ZnS
    Nanocrystallites Synthesized in Microemulsion. Langmuir 1997, 13 (24),
    6427-6431.
    9. Ye, X.; Fang, Y.; Hu, Y.; Xia, T.; Zhuang, W.; Long, Z. Formation of cubic zinc
    sulfide nanocrystals in paraffin liquid. Materials Letters 2007, 61 (28),
    5026-5028.
    10. Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S.
    Luminescent quantum dots for multiplexed biological detection and imaging.
    54
    Current Opinion in Biotechnology 2002, 13 (1), 40-46.
    11. Schapotschnikow, P.; Hommersom, B.; Vlugt, T. J. H. Adsorption and Binding
    of Ligands to CdSe Nanocrystals. The Journal of Physical Chemistry C 2009,
    113 (29), 12690-12698.
    12. Chan, W. C. W.; Nie, S. Quantum Dot Bioconjugates for Ultrasensitive
    Nonisotopic Detection. Science 1998, 281 (5385), 2016-2018.
    13. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. Synthesis of
    water-soluble ZnS : Mn2+ nanocrystals by using mercaptopropionic acid as
    stabilizer. J. Mater. Chem. 2003, 13 (7), 1853-1857.
    14. Corrado, C.; Jiang, Y.; Oba, F.; Kozina, M.; Bridges, F.; Zhang, J. Z. Synthesis,
    Structural, and Optical Properties of Stable ZnS:Cu,Cl Nanocrystals? ? The
    Journal of Physical Chemistry A 2009, 113 (16), 3830-3839.
    15. Kho, R.; Torres-Mart 躪?z, C. L.; Mehra, R. K. A Simple Colloidal Synthesis for
    Gram-Quantity Production of Water-Soluble ZnS Nanocrystal Powders. Journal
    of Colloid and Interface Science 2000, 227 (2), 561-566.
    16. Zhao, D.; He, Z.; Chan, W. H.; Choi, M. M. F. Synthesis and Characterization of
    High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots
    Capped by N-Acetyl-l-cysteine Via Hydrothermal Method. The Journal of
    Physical Chemistry C 2008, 113 (4), 1293-1300.
    17. Clapp, A. R.; Goldman, E. R.; Mattoussi, H. Capping of CdSe-ZnS quantum
    dots with DHLA and subsequent conjugation with proteins. Nat. Protocols 2006,
    1 (3), 1258-1266.
    18. Shankara Narayanan, S.; Sinha, S. S.; Verma, P. K.; Pal, S. K. Ultrafast energy
    transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled
    DNA. Chemical Physics Letters 2008, 463 (1-3), 160-165.
    19. Oladeji, I. O.; Chow, L. A study of the effects of ammonium salts on chemical
    bath deposited zinc sulfide thin films. Thin Solid Films 1999, 339 (1-2),
    148-153.
    20. Dong, B.; Cao, L.; Su, G.; Liu, W.; Qu, H.; Zhai, H. Water-soluble ZnS:Mn/ZnS
    core/shell nanoparticles prepared by a novel two-step method. Journal of Alloys
    and Compounds 2010, 492 (1-2), 363-367.
    21. Sooklal, K.; Cullum, B. S.; Angel, S. M.; Murphy, C. J. Photophysical Properties
    55
    of ZnS Nanoclusters with Spatially Localized Mn2+. The Journal of Physical
    Chemistry 1996, 100 (11), 4551-4555.
    22. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Relative fluorescence quantum
    yields using a computer-controlled luminescence spectrometer. Analyst 1983,
    108 (1290), 1067-1071.
    23. LaMer, V. K.; Dinegar, R. H. Theory, Production and Mechanism of Formation
    of Monodispersed Hydrosols. Journal of the American Chemical Society 1950,
    72 (11), 4847-4854.
    24. Li, W. Facile synthesis of monodisperse Bi2O3 nanoparticles. Materials
    Chemistry and Physics 2006, 99 (1), 174-180.
    25. Toikka, G.; Hayes, R. A.; Ralston, J. Surface Forces between Spherical ZnS
    Particles in Aqueous Electrolyte. Langmuir 1996, 12 (16), 3783-3788.
    26. Degen, A.; Kosec, M. Effect of pH and impurities on the surface charge of zinc
    oxide in aqueous solution. Journal of the European Ceramic Society 2000, 20
    (6), 667-673.
    27. Ichikawa, T.; Shiratori, S. Fabrication and Evaluation of ZnO Nanorods by
    Liquid-Phase Deposition. Inorganic Chemistry 2010, 50 (3), 999-1004.
    28. Ihs, A.; Liedberg, B. Chemisorption of -cysteine and 3-mercaptopropionic acid
    on gold and copper surfaces: An infrared reflection-absorption study. Journal of
    Colloid and Interface Science 1991, 144 (1), 282-292.
    29. Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. Fundamental studies of microscopic
    wetting on organic surfaces. 1. Formation and structural characterization of a
    self-consistent series of polyfunctional organic monolayers. Journal of the
    American Chemical Society 1990, 112 (2), 558-569.
    30. Tamang, S.; Beaune, G.; Poillot, C.; De Waard, M.; Texier-Nogues, I.; Reiss, P.
    Compact and highly stable quantum dots through optimized aqueous phase
    transfer. Parak, W. J., Yamamoto, K., Osinski, M., Eds.; SPIE: San Francisco,
    California, USA, 2011; pp 79091B-6.
    31. Keire, D. A.; Strauss, E.; Guo, W.; Noszal, B.; Rabenstein, D. L. Kinetics and
    equilibria of thiol/disulfide interchange reactions of selected biological thiols
    and related molecules with oxidized glutathione. The Journal of Organic
    Chemistry 1992, 57 (1), 123-127.
    56
    32. Oda, S.; Kukimoto, H. A new emission band in self-activated ZnS. Journal of
    Luminescence 1979, 18-19 (Part 2), 829-832.
    33. Bol, A. A.; Meijerink, A. Long-lived Mn2+ emission in nanocrystalline
    ZnS:Mn2+. Phys. Rev. B 1998, 58 (24), R15997.
    34. Bhargava, R. N. Doped nanocrystalline materials -- Physics and applications.
    Journal of Luminescence 1996, 70 (1-6), 85-94.
    35. Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Synthesis and
    Photoluminescence of Nanocrystalline ZnS:Mn2+. Nano Letters 2001, 1 (8),
    429-433.
    36. Quan, Z.; Wang, Z.; Yang, P.; Lin, J.; Fang, J. Synthesis and Characterization of
    High-Quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (Core/Shell) Luminescent
    Nanocrystals. Inorganic Chemistry 2007, 46 (4), 1354-1360.
    37. Srivastava, B. B.; Jana, S.; Karan, N. S.; Paria, S.; Jana, N. R.; Sarma, D. D.;
    Pradhan, N. Highly Luminescent Mn-Doped ZnS Nanocrystals: Gram-Scale
    Synthesis. The Journal of Physical Chemistry Letters 2010, 1 (9), 1454-1458.
    38. Lu, C.; Cui, Z.; Li, Z.; Yang, B.; Shen, J. High refractive index thin films of
    ZnS/polythiourethane nanocomposites. J. Mater. Chem. 2003, 13 (3), 526-530.

    QR CODE
    :::