| 研究生: |
陳育澤 Yu-Ze Chen |
|---|---|
| 論文名稱: |
奈米流體親水液滴的蒸發沉積圖案:溫度與表面活性劑的作用 |
| 指導教授: |
鍾志昂
Chih-Ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 咖啡環現象 、噴墨列印 、表面活性劑 |
| 外文關鍵詞: | coffee-ring phenomenon, inkjet printing, surfactant |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液滴蒸發的咖啡環現象不只在日常生活中出現,對於噴墨列印、塗層技術等應用中,咖啡環現象的出現會降低產品品質或是性能等因素。因此,本研究在不同溫度的基板上,以及在懸浮溶液中添加不同濃度的表面活性劑(sodium dodecyl sulfate, SDS)兩種抑制咖啡環效應的方法,以達到獲得均勻沉積圖案的目的。在液滴蒸發的過程中,主要受到毛細流、表面張力梯度、溫度梯度引發的馬倫哥尼流以及液滴界面下降四種因素的影響,這些因素都會對液滴沉積的結果產生影響。
本文實驗在三種基板的溫度(30˚C、50˚C和70˚C)以及四種SDS濃度(0 wt %、0.05 wt %、0.50 wt %和1.00 wt %)下進行實驗。實驗結果顯示,只有在基板溫度為30˚C且SDS濃度為低濃度(0 wt %和0.05 wt %)時,沉積圖案為咖啡環。而提高SDS濃度(0.50 wt %和1.00 wt %)或是提高基板溫度(50˚C、70˚C),實驗結果皆顯示大多數的粒子沉積於液滴內部或是中心區域,呈現了抑制咖啡環現象。
關鍵詞:咖啡環現象、噴墨列印、表面活性劑
The coffee ring phenomenon observed during the evaporation of droplets occurs not only in everyday life but also in applications such as ink-jet printing and coating technologies. The coffee ring effect in these applications can negatively affect product quality and performance, among other factors. In this study, we employed two methods to suppress the coffee ring: varying the substrate temperature and adding different concentrations of surfactant (sodium dodecyl sulfate, SDS). The aim is to achieve a uniform deposition pattern. During the droplet evaporation process, four major factors influenced the droplet: capillary flow, surface tension gradients, Marangoni flow induced by temperature gradients, and the descent of the droplet interface. All of these factors can affect the final droplet deposition.
This study conducted experiments at three different temperatures (30˚C, 50˚C, and 70˚C) and with four different SDS concentrations (0 wt %, 0.05 wt %, 0.50 wt %, and 1.00 wt %). The experimental results reveal that coffee ring deposition pattern only occurs when the substrate temperature is at 30˚C and the SDS concentration is low (0 wt % and 0.05 wt %). Increasing the SDS concentration or raising the substrate temperature leads to most particles being depositing within the droplet or in its central region, demonstrating the suppression of the coffee ring phenomenon.
Keywords: coffee-ring phenomenon, inkjet printing, surfactant
1.Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997).Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827-829.
2.Sirringhaus, H., Kawase, T. A. K. E. O., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., & Woo, E. P. (2000). High-resolution inkjet printing of all-polymer transistor circuits. Science, 290(5499), 2123-2126.
3.Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing—process and its applications. Advanced materials, 22(6), 673-685.
4.Maleki, H., & Bertola, V. (2020). Recent advances and prospects of inkjet printing in heterogeneous catalysis. Catalysis Science & Technology, 10(10), 3140-3159.
5.Dugas, V., Broutin, J., & Souteyrand, E. (2005). Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 21(20), 9130-9136.
6.Wang, D., Liu, S., Trummer, B. J., Deng, C., & Wang, A. (2002). Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature biotechnology, 20(3), 275-281.
7.De Gans, B. J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced materials, 16(3), 203-213.
8.Ipekci, H. H., Gozutok, Z., Celik, N., Onses, M. S., & Uzunoglu, A. (2021). Ink-jet printing of particle-free silver inks on fabrics with a superhydrophobic protection layer for fabrication of robust electrochemical sensors. Microchemical Journal, 164, 106038.
9.Kawase, T., Sirringhaus, H., Friend, R. H., & Shimoda, T. (2001). Inkjet printed via‐hole interconnections and resistors for all‐polymer transistor circuits. Advanced Materials, 13(21), 1601-1605.
10.Layani, M., Gruchko, M., Milo, O., Balberg, I., Azulay, D., & Magdassi, S. (2009). Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. ACS nano, 3(11), 3537-3542.
11.Trantum, J. R., Wright, D. W., & Haselton, F. R. (2012). Biomarker-mediated disruption of coffee-ring formation as a low resource diagnostic indicator. Langmuir, 28(4), 2187-2193.
12.Wang, F. C., & Wu, H. A. (2013). Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter, 9(24), 5703-5709.
13.Zhang, X., Wang, J., Bao, L., Dietrich, E., van der Veen, R. C., Peng, S., ... & Lohse, D. (2015). Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 11(10), 1889-1900.
14.Shin, D. H., Lee, S. H., Jung, J. Y., & Yoo, J. Y. (2009). Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectronic Engineering, 86(4-6), 1350-1353.
15.He, X., Cheng, J., Collier, C. P., Srijanto, B. R., & Briggs, D. P. (2020). Evaporation of squeezed water droplets between two parallel hydrophobic/superhydrophobic surfaces. Journal of colloid and interface science, 576, 127-138.
16.Majumder, M., Rendall, C. S., Eukel, J. A., Wang, J. Y., Behabtu, N., Pint, C. L., ... & Pasquali, M. (2012). Overcoming the “coffee-stain” effect by compositional Marangoni-flow-assisted drop-drying. The Journal of Physical Chemistry B, 116(22), 6536-6542.
17.Yunker, P. J., Still, T., Lohr, M. A., & Yodh, A. G. (2011). Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 476(7360), 308-311.
18.Bansal, L., Seth, P., Murugappan, B., & Basu, S. (2018). Suppression of coffee ring:(Particle) size matters. Applied Physics Letters, 112(21).
19.AvCarb:〈燃料電池氣體擴散層設計與功能〉,2020年5月,取自https://www.avcarb.com/wp-content/uploads/2020/06/GDL-Design-Function-Newsletter-Chinese-2.pdf
20.Park, J., & Moon, J. (2006). Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir, 22(8), 3506-3513.
21.Kim, D., Jeong, S., Park, B. K., & Moon, J. (2006). Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Applied physics letters, 89(26).
22.Still, T., Yunker, P. J., & Yodh, A. G. (2012). Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 28(11), 4984-4988.
23.Li, Y., Lv, C., Li, Z., Quéré, D., & Zheng, Q. (2015). From coffee rings to coffee eyes. Soft Matter, 11(23), 4669-4673.
24.Li, Y., Yang, Q., Li, M., & Song, Y. (2016). Rate-dependent interface capture beyond the coffee-ring effect. Scientific reports, 6(1), 24628.
25.Patil, N. D., Bange, P. G., Bhardwaj, R., & Sharma, A. (2016). Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles. Langmuir, 32(45), 11958-11972.
26.Caputo, F., Vogel, R., Savage, J., Vella, G., Law, A., Della Camera, G., ... & Calzolai, L. (2021). Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range. Journal of Colloid and Interface Science, 588, 401-417.
27.Lamour, G., Hamraoui, A., Buvailo, A., Xing, Y., Keuleyan, S., Prakash, V., ... & Borguet, E. (2010). Contact angle measurements using a simplified experimental setup. Journal of chemical education, 87(12), 1403-1407.
28.Parsa, M., Harmand, S., Sefiane, K., Bigerelle, M., & Deltombe, R. (2015). Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Langmuir, 31(11), 3354-3367.
29.Lama, H., Basavaraj, M. G., & Satapathy, D. K. (2017). Tailoring crack morphology in coffee-ring deposits via substrate heating. Soft Matter, 13(32), 5445-5452.
30.Weon, B. M., & Je, J. H. (2013). Fingering inside the coffee ring. Physical Review E, 87(1), 013003.