跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林書民
Shu-Min Lin
論文名稱: 應用於波長1.55 um光纖通訊前級接收放大器之設計與製作
The design and fabrication of the 1.55 um optical communication receiver amplifier
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 75
中文關鍵詞: 轉阻放大器光纖通訊光偵測器
外文關鍵詞: transimpedance amplifier, photodetector, optical communication
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對光纖通訊系統中前級接收端部分做相關之研究與製作,其包括應用於波長1.55 um之光偵測器以及轉阻放大器電路。
    在光偵測器方面,提出一種新型雙模MSM/SSO光偵測器,利用一種結構同時製作出兩種光偵測器。首先利用TMA MEDICI二維元件模擬軟體比較MSM-mode與SSO-mode在直流及高頻脈衝響應上之特性表現,決定出此結構適合做為光偵測器元件,然後利用聯亞科技有機金屬化學氣相磊晶系統(MOCVD)成長出所要結構之晶圓,再使用微光電實驗室設備製作元件並利用本實驗室光電量測系統進行量測、分析元件之特性。
    在轉阻放大器電路方面,主動元件選擇了通道摻雜電晶體。利用次微米之製程技術製作0.2 um T型閘極通道摻雜電晶體並使用本實驗室高頻微波量測系統進行元件之特性分析。最後利用此元件製作反向電壓放大器以及轉阻放大器電路,經由量測電路之特性,分析、討論並提出改善之方法。


    The thesis focused on the front stage of the 1.55 um optical receiver in the fiber communication system. We proposed a novel dual mode MSM/SSO photodetector. The performance of the dual mode MSM/SSO photodetector was simulated and fabricated, simultaneously. The dc and high frequency response of the dual mode were compared.
    The 0.2 um T-gate Doped-Channel FET was fabricated and applied in the inverter and transimpedance amplifier circuits. The performance of the inverter and transimpedance amplifier were measured. We analyzed them and proposed the ways that improve the performance of the circuit.

    第一章 導論 §1.1 光纖通訊之簡介…………………………………………1 §1.2 論文架構…………………………………………………4 第二章 新型雙模MSM/SSO光偵測器之設計與製作 §2.1 光偵測器工作原理之介紹………………………………. 6 §2.2 新型雙模MSM/SSO光偵測器之模擬與設計………….13 §2.2.1 物理模型及參數設定……………………………13 §2.2.2 新型雙模MSM/SSO光偵測器之結構設定…… 17 §2.2.3 新型雙模MSM/SSO光偵測器之模擬結果…… 19 §2.2.4 抗反射層之模擬與設計………………………… 22 §2.3 新型雙模MSM/SSO光偵測器之製程步驟……………. 27 §2.3.1 Align key………………………………………....27 §2.3.2 光照相製版定義出主動區……………………… 28 §2.3.3 光照相製版定義出歐姆接觸區………………… 28 §2.3.4 歐姆接觸………………………………………… 29 §2.3.5 蕭特基接觸……………………………………… 29 §2.3.6 成長抗反射層…………………………………… 30 §2.3.7 開金屬接觸區…………………………………… 30 §2.3.8 金屬連線………………………………………… 31 §2.4 新型雙模MSM/SSO光偵測器之量測結果與討論……. 35 §2.4.1 暗電流…………………………………………… 37 §2.4.2 膝電壓…………………………………………….38 §2.4.3 光響應度及外部量子效率……………………….39 §2.4.4 C-V量測………………………………………….41 §2.4.5 高頻脈衝響應…………………………………….41 §2.4.6 眼圖量測………………………………………….42 §2.4.7 結語……………………………………………….46 第三章 通道摻雜電晶體之製作與量測結果 §3.1 簡介………………………………………………………..47 §3.2 次微米通道摻雜電晶體之製程步驟……………………..50 §3.2.1 歐姆接觸………………………………………… 50 §3.2.2 蝕刻隔離………………………………………….51 §3.2.3 金屬連線………………………………………….51 §3.2.4 蕭特基接觸…………………………………… … 52 §3.3 量測結果與討論…………………………………………. 55 第四章 轉阻放大器之設計與製作 §4.1 轉阻放大器之設計………………………………………...58 §4.1.1 光接收前級放大器之介紹………………………..58 §4.1.2 轉阻放大器之設計………………………………..59 §4.2 轉阻放大器之製作與量測結果…………………………1... 63 §4.2.1 製作過程………………………………………….. 63 §4.2.2 反向電壓放大器…………………………………...63 §4.2.3 轉阻放大器…………………………………...........67 §4.2.4 結語…………………………………....................... 70 第五章 結論……………………………………..71 參考文獻…………………………………………..73

    [1] M.Agethen, D. Keiper, G. Janssen, A. Brennemann, P. Velling, C. van den Berg, R. M. Bertenburg, “InGaAs PIN detector for frequencies above 100 GHz ,” Indium Phosphide and Related Materials Conference., vol. 1, pp.673-676, 2002.
    [2] V. Hurm, W. Benz, W. Bronner, M. Dammann, T. Jakobus, G. Kaufel, K. kohler, Z. Lao, M. Ludwig, B.Raynor, J. Rosenzweig and M. Schlechtweg, “10Gbit/s long wavelength pin-HEMT photoreceiver grown on GaAs ,” IEEE ELECTRONICS LETTERS., vol. 33, pp.1653-1654, 1997.
    [3] Ibrahim Kimukin, Necmi Biyikli, Bayram Butun, Orhan Aytur, Selim M. Unlu, EKmel Ozbay, “ InGaAs-Based high-performance p-i-n Photodiodes ,” IEEE photon. Technol. Lett., vol. 14, pp. 366-368, 2002.
    [4] K. Kitamura, K. Ito, H. Matsuda, T. Kaneko, M. Haneda, “Broadband receiver module for 10 Gbit/s optical transmission ,” IEEE ELECTRONICS LETTERS., vol. 27, pp. 1435-1436, 1991.
    [5] D. Kuhl, F. Hieronymi, E. H. Bottcher, D. Bimberg, “High-speed Metal-Semiconductor-Metal photodetectors on InP:Fe ,” IEEE photon. Technol. Lett., Vol. 2, pp. 574-576, 1990.
    [6] J. H. Burroughes, M. S. Milshtein, G. D. Pettit, N. Pakdaman, H. Heinrich, J. M. Woodall, “ The frequency behavior of InGaAs/AlInAs Metal-Semiconductor-Metal photodetectors at low bias voltage for data communication applications ,” IEEE photon. Technol. Lett., Vol. 4, pp. 163-166, 1992.
    [7] Martin Tomaska, Michel Marso, Alfred Fox, peter Kordos, “Microwave properties of the MSM photodetectors with 2-DEG ,” ASDAM ’98, 2nd International Conference, pp. 295-298, 1998.
    [8] C. J. Wei, D. Kuhl, E. H. Bottcher, D. Bimberg, E. Kuphal, “ Lateral high-speed Metal-Semiconductor-Metal photodiodes on high- resistivity InGaAs .” IEEE photon. Technol. Lett., Vol. 11, pp. 334-335, 1990.
    [9] S.M. Sze, ‘’Physics of semiconductor devices. ’’ John Wiley, 19981.
    [10] J.J. Barnes, R.J. Lomax and G. I. Hadded, ‘’Finite-element simulation of GaAs MESFET’s with lateral doping profiles and submicron gates. ’’ IEEE Trans. Electron Devices, vol. ED-23, p.10424, 1976.
    [11] Ali F. Salem, Kevin F. Brennan, ‘’Theoretical study of the response of InGaAs Metal-Semiconductor-Metal photodetectors. ‘’ IEEE Journal of Quantum Electrons. vol. 31, pp.944-953, 1995.
    [12] J. H. Burroughes, M. Hargis, ‘’1.3 µm InGaAs MSM photodetector with abrupt InGaAs/AlInAs interface. ‘’ IEEE Photonics Technology Letters, vol. 3, pp.532-534, 1991.
    [13] M. Tong, A.A. K. Nummila, I. Adesida, ‘’ Selective wet etching InGaAs/InAlAs/InP heterostructure field–effect transistors. ‘’ Indium Phosphide and Related Matricals, Fourth International Conference on, pp. 298-301, 1992.
    [14] R. Dingle, H. L. Stormer, A.C. Gossard and W. Wiexmann, Appl.
    Phys., Vol. 33, pp.665-667, 1978.
    [15] T.Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, Jan. J. Appl.Phys., Vol. 19, L225-L227, 1980.
    [16] H. Hida, A. Okamoto, H. Toyoshima, and K. Ohata, IEEE Electron Device Lett., Vol. EDL-7, pp.625-626, 1986.
    [17] F.T. Chien, Y.J. Chan, ‘’ Improved voltage gain of transimpedance amplifier by AlGaAs/InGaAs doped-channel FET’s. ‘’ IEEE Electron devices., Vol. 46, pp.1094-1098, 1999.
    [18] Y.J. Chan, D. Pavlidis, ‘’High performance E/D-MODE InAlAs/InGaAs HIGFET Technology and Integrated Logic Functions. ‘’ in Proc. 4th Int. Conf. on Indium Phosphide and Related Materials., pp.499-502, 1992.

    QR CODE
    :::