| 研究生: |
陳欣妤 Hsin-Yu Chen |
|---|---|
| 論文名稱: |
臺灣芮氏規模修正與場址參數相關性分析 |
| 指導教授: |
郭俊翔
Chun-Hsiang Kuo 顏宏元 Horng-Yuan Yen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 芮氏規模 、場址參數 |
| 外文關鍵詞: | Local Magnitude, Site Parameters |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
芮氏規模是根據地震波紀錄之振幅來計算,各測站場址條件的差異會對振幅造成不等的放大效應而影響芮氏規模的計算。為了準確表示地震事件的芮氏規模,利用了從多個測站獲得的平均規模值。dML代表地震事件的規模與各個測站所記錄到的規模之間的差異。目前,台灣中央氣象署在決定芮氏規模時並未應用dML修正。我們觀察到dML值的範圍從-0.71到0.92不等。當應用dML修正時,事件規模的標準差可以從0.36減少至0.22,顯示出規模更一致且更加可靠。對於僅有震央附近測站記錄到的較小規模地震,或是區域型的觀測網,可以更顯出dML修正應用的重要性。在這種情況下,所有測站可能都處於類似的地質條件(例如,都位於硬岩或軟土上),這種同質性會導致規模估計的系統性偏差。因此,使用dML修正有助於將這些測站調整到統一的地震場址條件來減少這些偏差。本研究提議利用已知的場址參數來計算dML。在這些參數中,VS30在本研究中與dML顯示出最強的相關性。此外,放置在井下的地震儀大大減少了來自地表噪訊的干擾,進而獲得高品質的地動訊號。由於地表與井下地震儀之間的地震波速度差異,導致計算出的芮氏規模結果(DeltaML)有所不同。使用井下記錄來決定芮氏規模時,由於其振幅較地表記錄小,會導致低估。本研究的目的是探討dML與場地參數之間的相關性,並評估dML修正對芮氏規模的影響。此外,我們還旨在評估由於場址放大效應導致的地表和井下記錄的芮氏規模計算差異(DeltaML)。
The local magnitude (ML) of an earthquake, calculated from the amplitude of seismic waves, can vary depending on site conditions at different recording stations. These site conditions cause different amplification effects on the recorded seismic waves, impacting the calculated ML values. To represent the ML of an earthquake event, the average magnitude value obtained from many stations is utilized. The term “dML” signifies the difference between the event magnitude and individual station magnitudes. The use of dML corrections is not currently applied by the Central Weather Administration (CWA) of Taiwan in their magnitude determinations. The observed dML values ranged widely from -0.71 to 0.92 magnitude units. When dML corrections are applied, the standard deviation of the event magnitude decreases from 0.36 to 0.22 magnitude units, indicating a more consistent and reliable magnitude determination. The application of dML corrections is especially critical for earthquakes of small magnitudes. These events are typically recorded only by stations near the epicenter, which might all be situated on similar ground conditions (e.g., all on hard rock or all on soft soil). This homogeneity can lead to systematic biases in magnitude estimates. Therefore, using dML corrections helps mitigate these biases by adjusting those stations to a united seismic site condition. This study proposes utilizing known site parameters to calculate dML. Among these parameters, VS30 showed the strongest correlation with dML in this study. Moreover, seismic instruments placed downhole substantially minimize interference from surface noise, enabling the acquisition of high-quality ground motion signals. The difference in seismic wave velocities between the layers at the surface and downhole seismometers leads to divergence in the calculated local magnitude results (DeltaML). When employing downhole recordings for local magnitude determination, an underestimation occurs due to their smaller amplitudes compared to surface recordings. The goal of this study is to explore the correlation between dML and site parameters and to evaluate the impact of dML corrections on local magnitude determinations. Additionally, we aim to evaluate differences (DeltaML) in local magnitude calculations resulting from ground and downhole recordings due to site amplification effects.
Bakun, W. H. (1984). Magnitudes and moments of duration. Bulletin of the Seismological
Society of America, 74(6), 2335-2356.
Borcherdt, R. D. (1970). Effects of local geology on ground motion near san francisco bay.
Bulletin of the Seismological Society of America, 60(1), 29 61.
BSSC, B. S. S. C. (2001). Nehrp recommended provisions for seismic regulations for new
buildings and other structures.
Castello, B., Olivieri, M., & Selvaggi, G. (2007). Local and duration magnitude determination for the italian earthquake catalog, 1981-2002. Bulletin of the Seismological Society of America, 97(1B), 128-139.
Central Weather Administration. (2012). Central weather administration seismographic
network. https://doi.org/10.7914/SN/T5
Chang, S.-C., Wen, K.-L., Huang, M.-W., Kuo, C.-H., Lin, C.-M., Chen, C.-T., & Huang,
J.-Y. (2019). The high-frequency decay parameter (kappa) in taiwan. Pure and Applied Geophysics, 176, 4861-4879.
Chen, K. H., Kennett, B. L., & Furumura, T. (2013). High-frequency waves guided by the
subducted plates underneath taiwan and their association with seismic intensity anomalies. Journal of Geophysical Research: Solid Earth, 118(2), 665-680.
Edwards, B., Kraft, T., Cauzzi, C., Kästli, P., & Wiemer, S. (2015). Seismic monitoring and analysis of deep geothermal projects in st gallen and basel, switzerland.
Geophysical Journal International, 201(2), 1022-1039.
Ghofrani, H., & Atkinson, G. M. (2014). Site condition evaluation using horizontal-to-
vertical response spectral ratios of earthquakes in the nga-west 2 and japanese databases. Soil Dynamics and Earthquake Engineering, 67, 30-43.
Guan, Z.-K., Kuo-Chen, H., & Wei-Fang, S. (2020). Re-calculation of the attenuation functions for local magnitude from the upgraded central weather bureau seismic network in taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 31(4), 4.
Hassani, B., & Atkinson, G. M. (2016). Applicability of the site fundamental frequency as a vs 30 proxy for central and eastern north america. Bulletin of the Seismological Society of America, 106(2), 653 664.
Holt, J., Edwards, B., & Poggi, V. (2019). Scenario-dependent site effects for the determination of unbiased local magnitude. Bulletin of the Seismological Society of America, 109(6), 2658-2673.
Koppes, M. N., & Montgomery, D. R. (2009). The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nature Geoscience, 2(9), 641 647.
Kuo, C.-H., Chen, C.-T., Lin, C.-M., Wen, K.-L., Huang, J.-Y., & Chang, S.-C. (2016). S-wave velocity structure and site effect parameters derived from microtremor arrays in the western plain of taiwan. Journal of Asian Earth Sciences, 128, 27-41.
Kuo, C.-H., Wen, K.-L., Hsieh, H.-H., Lin, C.-M., Chang, T.-M., & Kuo, K.-W. (2012).
Site classification and vs30 estimation of free-field tsmip stations using the logging data of egdt. Engineering Geology, 129, 68-75.
Kuo, C.-H., Wen, K.-L., Lin, C.-M., Wen, S., & Huang, J.-Y. (2015). Investigating near surface s-wave velocity properties using ambient noise in southwestern taiwan.
Terrestrial, Atmospheric & Oceanic Sciences, 26(2).
Kwok, O. L. A., Stewart, J. P., Kwak, D. Y., & Sun, P.-L. (2018). Taiwan-specific model
for v s30 prediction considering between-proxy correlations. Earthquake Spectra,
34(4), 1973-1993.
Lai, T.-S., Chao, W.-A., & Wu, Y.-M. (2022). A local magnitude scale from borehole recordings with site correction of the surface to downhole. Seismological Research
Letters, 93(3), 1524-1531.
Lee, C.-T., Cheng, C.-T., Liao, C.-W., & Tsai, Y.-B. (2001). Site classification of taiwan
free-field strong-motion stations. Bulletin of the Seismological Society of America,
91(5), 1283-1297.
Lin, C.-M., Wen, K.-L., Kuo, C.-H., & Huang, J.-Y. (2016). Receiver function analysis of strong-motion stations in kaohsiung-pingtung area, taiwan. EGU General Assembly Conference Abstracts, EPSC2016-5386.
Lin, C., Wen, K., Kuo, C., & Lin, C. (2014). S-wave velocity model of taipei basin. The 5th Asia Conference on Earthquake Engineering, (SACEE), Taipei, Taiwan.
Miao, Q., & Langston, C. A. (2008). Comparative study of distance attenuation in the
central united states and western india. Seismological Research Letters, 79(3), 446-
456.
Michaelson, C. A. (1990). Coda duration magnitudes in central california: An empirical approach. Bulletin of the Seismological Society of America, 80(5), 1190-1204.
Pechmann, J. C., Nava, S. J., Terra, F. M., & Bernier, J. C. (2007). Local magnitude
determinations for intermountain seismic belt earthquakes from broadband digital data. Bulletin of the Seismological Society of America, 97(2), 557-574.
Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of the seis-
mological society of America, 25(1), 1-32.
Richter, C. F. (1958). Elementary seismology.
Ristau, J., Harte, D., & Salichon, J. (2016). A revised local magnitude (ml) scale for
new zealand earthquakes. Bulletin of the Seismological Society of America, 106(2),
398-407.
Shin, T.-C. (1993). The calculation of local magnitude from the simulated wood-anderson
seismograms of the short-period seismograms in the taiwan area. Terrestrial, Atmospheric and Oceanic Sciences, 4(2), 155-170.
Uhrhammer, R., Hellweg, M., Hutton, K., Lombard, P., Walters, A., Hauksson, E., &
Oppenheimer, D. (2011). California integrated seismic network (cisn) local magnitude determination in california and vicinity. Bulletin of the Seismological Society of America, 101(6), 2685-2693.
Wu, Y.-M., Allen, R. M., & Wu, C.-F. (2005). Revised ml determination for crustal earthquakes in taiwan. Bulletin of the Seismological Society of America, 95(6),
2517-2524.
Yong, A., Cochran, E., Andrews, J., Hudson, K., Martin, A., Yu, E., Herrick, J., & Dozal,
J. (2021). Vs 30 and dominant site frequency (fd) as provisional station ml corrections (d ml) in california. Bulletin of the Seismological Society of America, 111(1),
61-76.
上河文化團隊.(2020). 高山百岳地形圖.
何春蓀.(1997).臺灣地質概論一臺灣地質圖說明書.經濟部中央地質調查所.
強震測站場址工程地質資料庫.(2000). https://egdt.ncree.org.tw/林啓文等.(2021).臺灣活動斷層調查的近期發展,經濟部中央地質調查所彙刊.
溫國樑等.(2016). 探討地表一井下測站波速特性及其對規模之影響(tech. rep.
No. MOTC-CWB-105-E-07). 交通部中央氣象局.https://www.grb.gov.tw/
search/planDetail?id=11627176
溫國樑等.(2017).探討地表一井下測站波速特性及其對規模之影響(tech. rep.
No. MOTC-CWB-106-E-08). 交通部中央氣象局.https://www.grb.gov.tw/
search/planDetail?id=11982622
郭俊翔等.(2017).臺灣強震測站場址資料庫(tech.rep. No. NCREE-17-004). 國家地震工程研究中心.https://www.ncree.narl.org.tw/accomplishment/technicalreports/
page/ 10995
鄭世楠等.(1999). 臺灣十大災害地震圖集.交通部中央氣象局.
陳卉瑄.(2021). 隱沒帶導波 subduction zone guided waves. https://katepili.wixsite.com/
kate-chen/post /%E9%9A% B1%6% B2%92% E5% B8% B6%E5%B0%8E%E6%
B3%A2-subduction-zone-guided-waves
陳文山.(2016). 臺灣地質概論.中華民國地質學會.