| 研究生: |
符智傑 Chih-Chieh Fu |
|---|---|
| 論文名稱: |
曾文水庫集水區事件型降雨誘發山崩潛感及山崩機率預測模式 Event-based Landslide Susceptibility and Rainfall-induced Landslide Probability Prediction Model in the Zengwen Reservoir Catchment |
| 指導教授: |
李錫堤
Chyi-Tyi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 257 |
| 中文關鍵詞: | 山崩 、山崩潛感值 、事件誘發山崩目錄 、事件型山崩潛感模型 、基礎山崩潛感圖 、羅吉斯迴歸 |
| 外文關鍵詞: | Landslide, Landslide susceptibility, Event-based landslide inventory, Event-based landslide susceptibility model, Basic susceptibility map, Logistic regression |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
事件型山崩潛感模型是利用事件誘發山崩目錄及地形、地質因子和促崩因子訓練建模。若建立模型的事件之前有超大豪雨或颱風或大地震發生過,事件誘發山崩的分布特性可能與未受到干擾的情況有所不同。本研究訂定時隔6個月以上第一場超過降雨門檻的雨量事件為獨立事件,在曾文水庫集水區挑選賀伯颱風、桃芝颱風、敏督利颱風、20050615豪雨、20060609豪雨、莫拉克颱風、20110718豪雨、20120610豪雨、20150523豪雨共九期獨立事件建立山崩潛感模型。將模型進行交叉驗證,發現以豪雨事件建立的模型彼此之間相互預測結果表現不錯。敏督利模型由於坡度因子及促崩因子表現良好,預測其他事件的AUC皆達到0.710以上,解釋莫拉克颱風誘發山崩的AUC達0.673,為最穩定的事件型山崩潛感模型。
比較歷年山崩目錄按傳統方法建立之不包括促崩因子的山崩潛感模型與各個事件基礎山崩潛感圖,可以觀察到九個事件個別建立的基礎山崩潛感圖與歷年山崩潛感圖會有相近的潛感分布趨勢,表示歷年山崩潛感圖即可代表一個區域的基礎潛感値分布。本研究選用歷年山崩潛感模型為基礎潛感模型,將各事件分為極端事件及一般事件,將不同潛感區間中相同雨量條件下的崩壞比取其平均值,分別建立山崩潛感‒崩壞比和最大時雨量/總雨量關係式,利用雨量因子間的相關係數將關係式合併以計算在不同雨量分布下各個潛感體質的崩壞比。各事件山崩機率圖的預估山崩面積與事件誘發山崩目錄比較結果顯示,本研究建立之關係式低估桃芝颱風誘發山崩;高估賀伯颱風、敏督利颱風及豪雨事件誘發山崩,預測莫拉克颱風誘發山崩與實際誘發山崩面積較為吻合。
An event-based landslide susceptibility model is constructed based upon an event landslide inventory, topographic factors, geological factors and triggering factors. If an extreme rainfall, typhoon, or a major earthquake happened before a modeling event, the characteristics of landslide distribution may be different with undisturbed conditions. In the present study, an independent event is defined as the event without a prior-event which exceeds the rainfall threshold of the region within 6 months or more. In the Zengwen reservoir catchment area, this study chooses nine independent events, including Herb typhoon, Toraji typhoon, Mindulle typhoon, 20050615 rainfall, 20060609 rainfall, Morakot typhoon, 20110718 rainfall, 20120610 rainfall, and 20150523 rainfall, to establish nine event-based landslide susceptibility models. These models are then cross-validated. The results are good between rainfall events. Due to good performance of slope factor and triggering factors, Mindulle model is the most stable event-based landslide susceptibility model for typhoon events. It shows that AUC of the prediction curve for landslide induced by Morakot typhoon is 0.673; AUCs of prediction curve for other events are more than 0.710.
Compare the landslide susceptibility model built by multi-temporal landslide inventories, via traditional approach without triggering factors, to the nine basic susceptibility maps built by each event, a similar trend of susceptibility distribution among them can be observed. This study chooses the multi-temporal landslide susceptibility map as representative basic susceptibility of the region. The events are divieded into extreme events and common events. In each susceptibility bin and each rainfall bin, the average of probability of landslide failure is calculated from every events landslide inventory of same type, and then a relationship among landslide susceptibility, probability of failure, and rainfall intensity or total rainfall is completed. Utilizing the correlation coefficient between two rainfall factors, this study combines the two relationships to calculate the probability of failure of different susceptibility values in rainfall event. Comparing the result of landslide area predicted by the relationship and each event inventory shows that the relationship underestimate landslide area of Toraji typhoon, and overestimate landslide area of Herb typhoon, Mindulle typhoom and rainfall events. Predicted landslide area of Morakot typhoon is approximate to actual landslide area.
李錫堤,潘國樑,林銘郎 (2003) 山崩調查與危險度評估-山崩潛感分析之研究(1/3),經濟部中央地質調查所報告,第92-11號,154。
經濟部中央地質調查所 (2011) 易淹水地區上游集水區地質調查與資料庫建置‒集水區地質調查及山崩土石流調查與發生潛勢評估計畫,經濟部中央地質調查所,共700頁。
邱奕勛 (2012) 降雨量與誘發山崩發生率之關係,國立中央大學應用地質研究所碩士論文,共210頁。
張弼超 (2005) 運用羅吉斯迴歸法進行山崩潛感分析-以國姓地區為例,國立中央大學應用地質研究所碩士論文,共134頁。
張伯毅 (2013) 台灣山區之降與誘發山崩及山坡復育情形,國立中央大學應用地質研究所碩士論文,共377頁。
陳盈靜 (2014) 台灣山區降雨量與誘發山崩率之關係及集集大地震後山坡復育情形,國立中央大學應用地質研究所碩士論文,共193頁。
蔡雨澄 (2012) 極端降雨下之山崩潛感分析-以莫拉克颱風誘發山崩為例,國立中央大學應用地質研究所碩士論文,共126頁。
蔡心蘭 (2016) 台灣各子集水區之降雨與誘發山崩率之關係,國立中央大學應用地質研究所碩士論文,共157頁。
鍾意晴 (2008) 區域性山崩潛感分析探討-以石門水庫集水區為例,國立中央大學地球物理研究所碩士論文,共172頁。
簡逢助 (2015) 山崩潛感値暨降雨量與崩壞比之關係探討,國立中央大學應用地質研究所碩士論文,共151頁。
Agresti, A. (2002) Categorical data analysis (2nd ed.), John Wiley, New York, 710p.
Atkinson, P. M., Massari, R., (1998) Generalized linear modelling of susceptibility to landsliding in the central Apennines, Italy, Computers & Geosciences, 24, 373-385.
Burton, A., Bathurst, J. C., (1998) Physically based modeling of shallow landslide sediment yield at a catchment scale, Environmental Geology, 35, 89-99.
Budimir, M. E. A., Atkinson, P. M., Lewis, H. G., (2015) A systematic review of landslide probability mapping using logistic regression, Landslide, 12, 419-436.
Chang, K. T., Chiang, S. H., Hsu, M. L., (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology, 89, 335-347.
Chang, K. T., Chiang, S. H., Lei, F., (2008) Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions, Earth Surface Processes and Landforms, 33, 1261-1271.
Chung, C. F., Fabbri, A. G., (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering & Remote Seneing, 65, 12, 1389-1399.
Chung, C. F., Fabbri, A. G., (2003) Validation of spatial prediction models for landslide hazard mapping, Natural Hazards, 30, 451-472.
Dai, F. C., Lee, C. F., (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213-228.
Dai, F. C., Lee, C. F., Tham, L. G., Ng, K. C., Shum, W. L., (2004) Logistic regression modelling of storm-induced shallow landsliding in time and space on natural terrain of Lantau Island, Hong Kong, Bulletin of Engineering Geology and the Environment, 63, 315-327.
Feinberg, S. (1985) The Analysis of Cross-Classified Categorical Data (2nd ed.), Cambridge, MA, MIT Press, 198p.
Finlay, P. F., Fell, R., Maguire, P. K., (1997) The relationship between the probability of landslide occurrence and rainfall, Canadian Geotechnical Journal, 34, 811-824.
Jibson, R. W., Harp, E. L., Michael, J. A., (2000) A method for producing digital probabilistic seismic landslide hazard maps, Engineering Geology, 58, 271-289.
Lee, C. T., Pan, K. L., Lin, M. L., (2004) Research of landslide susceptibility analyses, Taiwan Central Geological Survey Open-File Report, 94-18, 474p.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., (2008) Statistical approach to storm event-induced landslide susceptibility, Natural Hazard and Earth System Sciences, 8, 941-960.
Lee, C. T., (2014a) Multi-stage statistical landslide hazard analysis: rainfall-induced landslides, Landslide Science for a Safer Geoenvironment, 3, 291-298.
Lee, C. T., (2014b) Multi-stage statistical landslide hazard analysis: earthquake-induced landslides, Landslide Science for a Safer Gerenvironment, 3, 205-211.
Lee, C. T., Chung, C. C., (2017) Common patterns among different landslide susceptibility models of the same region, Advancing Culture of Living with Landslides, 2, 937-942.
Lillesand, T. M., Kiefer, R. W. (2000) Remote sensing and image interpretation, Wiley & Sons, New York, 724p.
Long, J. S. (1997) Regression models for categorical and limited dependent variables, Thousand Oaks, California: Sage Publications, 297p.
Ohlmacher, G. C., Davis, J. C., (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA, Engineering Geology, 69, 331-343.
Wilson, J. P., Gallant, J. C. (2000) Terrain analysis, John Wiley & Sons, Inc., 51-58.