| 研究生: |
林資凱 Tze-Kin Lin |
|---|---|
| 論文名稱: |
水力回填煤灰之動態特性 The properties of hydraulic filled coal ash |
| 指導教授: |
黃俊鴻
Jing-Hung Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 再壓密 、超額孔隙水壓 、液化強度 、水力回填 、煤灰 、動態性質 |
| 外文關鍵詞: | cyclic resistance, hydraulic filled, coal ash |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
囿於環保與用地問題,目前火力發電廠已有在鬆軟之水力回填煤灰場址構築重型儲煤堆或擴廠之規劃。但對於以水力回填煤灰造地所形成高含水量、高孔隙比與低強度地盤之工程性質研究,則甚為缺乏。究其原因,實為過去從未有在煤灰填築場址上,建造重型結構物之想法。然而,在如此鬆軟之地基如何安全承載重型結構物載重與地震力的作用,實為工程設計應審慎考慮之問題。因此,本研究特針對水力回填造地後之現地煤灰的動態特性進行研究,期能對此類場址之地基耐震設計有所幫助。
本研究規劃一序列現場試驗、取樣以及各種室內物理、化學性質試驗,求得現地煤灰之物理指數性質與現地工程性質。並對不同取樣方式所得試體與重模試體進行大量之三軸動態強度試驗,求得各種煤灰試體之液化強度曲線與超額孔隙水壓激發特性。
研究結果顯示,現地煤灰之土壤動態強度較一般液化地區的砂土為高;煤灰土層的動態強度隨著粗顆粒爐底灰含量的增加而降低;經擠壓砂樁改良過之煤灰土層,其液化強度有明顯的增加;粗顆粒煤灰受剪液化後,會產生顆粒破碎的情形;煤灰土壤受動態反覆應力作用時,其超額孔隙水壓比上升曲線分佈在一窄小的帶寬內;煤灰土壤受震液化後,其再壓密之體積應變量約為1%,較一般砂土為低;隨著煤灰所承受之最大剪應變增加,試體的再壓密體積應變量越大。
In this paper, a series of in-situ explorations and samplings were carried out in a coal ash deposit at central Taiwan. The deposit was formed with coal ash, a surplus of thermal power plant, by hydraulic filling. Laboratory physical, chemical and cyclic triaxial tests were then conducted to obtain the basic properties of the coal ash and its cyclic resistance. The in-situ explorations included the standard penetration test, seismic cone penetration test and cross- hole seismic survey. The in-situ samplings consisted of tube sampling during boring and block sampling in a pit. Test samples comprised undisturbed samples and remolded samples. It was found that the in-situ coal ash is a high void ratio, high water content, high fines content, low unit weight, low specific gravity, non-plastic, cohesionless, spherical shaped, granular soil. Although the in-situ coal ash is soft and non-plastic, its cyclic resistance is significantly higher than those of the hydraulic filled sandy soils in the same general area. This may be attributed to its high fines content and fine-grained size. Besides, the influences of many factors on the cyclic resistance of the coal ash were summarized, and the characteristics of excess pore pressure generation and re-consolidation after liquefaction were also presented. These test data may provide a valuable base for aseismic design in a foundation soil with coal ash.
1.陳惠峰、林志棟,「台灣電力公司之火力電廠產灰概要」,台灣地區飛灰混凝土應用研討會(一)專輯,中壢,第19-1∼19-8頁(1992)。
2.汪聞韶,土的動力強度和液化特性,中國電力出版社,北京,第29-141頁。
3.宋勻文,「台北盆地北投地區基隆河黏土之動態性質」,碩士論文,國立中央大學土木工程學研究所,中壢(1998)。
4.汪紹聞、秦蔚琴,「電廠粉煤灰的強度和液化特性以及對儲灰埧設計的看法」,第二屆全國土動力學會議:全國土工建築物與地基抗震學術討論會論文集,西安,第156∼161頁(1986)。
5.溫彥峰、遍京紅、蔡紅,「凝硬和凍融作用對乾儲粉煤灰的力學性質的影響」,岩土工程學報,第二十二卷,第三期,第275∼278頁(2000)。
6.Seed, H.B., and Lee, K.L.,“Liquefaction of saturated sands during cyclic loading,”Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
7.吳偉特,「台北盆地土壤之剪力模數與阻尼比特性」,土木水利,第十卷,第一期,第69-88頁(1983)。
8.Ishihara, K.,“Liquefaction and flow failure during earthquackes,”Geotechinique, Vol. 43, No. 3, pp.351-415(1993).
9.Vaid, Y.P., Chern, J.C., and Tumi, H.,“Confining pressure, grain angularity, and liquefaction,”Journal of Geotechnical Engineering , ASCE, Vol. 111, No. 3, pp. 1229-1235(1985).
10.何廠訥,土工的若干新理論研究與應用,水利電力出版社,北京,第22-26頁(1994)。
11.Lee, K.L., and Albaisa, A.,“Earthquake induced settlement in saturated sands,”Journal of the soil Mechnianics and Foundations Division, ASCE, Vol. 100, No. GT4. (1974).
12.Dealba, P., Chen, C.K., and Seed, H,B.,“Determination of soil Liquefaction characteristic by large-scale laboratory tests,”EERC 75-14 Report, California, U.S.A., (1975).
13.Sakai, A., Samang, L., and Miura, N.,“Behavior of soft soils under undrained cyclic loading with initial shear stress,”Journal of Southeast Geotechnical Society, Vol. 25, No. 2, pp. 1-22(1994).
14.黃俊鴻、李崇正、黃富國,「新化斷層與南二高交會處之土壤液化評估與防制建議」,國立中央大學土木工程研究所研究報告,No. 101,中壢(1998)。
15.Seed, H. B.,“Evaluation of soil liquefaction effects on level ground during earthquakes,”Liquetaction problems in geotechnical engineering. ASCE. national convention, pp. 1-104(1976).
16.Yoshimi, Y., Tokimatsu, K., Kaneko, O., and Makihora, Y., “Undrained Cyclic shear strength of a dense Niigata sand,”Soils and Foundations, Vol. 24, No. 4,pp. 131-145(1984).
17.吳偉特、楊騰方,「細料含量在不同程度影響因素中對台灣地區沈積性砂土液化特性之研究」,土木水利季刊,第十四卷,第三期,第59-74頁(1987)。
18.吳偉特,「台灣地區砂性土壤液化潛能之初步分析」,土木水利季刊,第六卷,第二期,第39-70頁(1979)。
19.Seed, H. B., and Idress, I. M.,“Analysis of soil liquefaction,”JSMFD, ASCE, Vol. 93, No.SM3, PP. 83-108(1967).
20.Ishihara, K., and Okada, S.,“Effects of stress history on cyclic behavior of sand,”Soil and Foundation, Vol. 18, No.4, Japanese, PP.31-45(1978).
21.鄭文隆、郭奇正,「未飽和砂性土壤承受反覆剪應力之孔隙水壓上升研究」,土木水利季刊,第十四卷,第三期,第59-74頁(1987)。
22.Hardin , B. O. and Drnevich,V. P., ”Shear Modulus and Damping in Soil:Measurement and Parameter Effects,” Journal of Soils Mechanics and Foundations Division , ASCE , Vol.98 , No.SM6 , pp.603-624(1972).
23.Hardin, B. O. and Black, W. L., ”Vibration Modulus of Normally Consolidation Clay,” Journal of the Soils Mechanics and Foundations Division , ASCE , Vol.94 , No.SM2 , pp.353-369(1968).
24.Hardin , B. O. and Richart , F. E.,“Elastic Wave Velocities in Granular Soils,” Journal of Soils Mechanics and Foundations Division , ASCE , Vol.89 , No.SM1 , pp.33-65(1963).
25.Hardin, B. O. and Black, W. L.,”Sand Stiffness Under Various Triaxial Stresses,” Journal of the Soils Mechanics and Foundations Division , ASCE , Vol.92 , No.SM2 , pp.27-42(1966).
26.Hardin , B. O.,“Dynamic vs. Static Shear Modulus for Dry Sand,” Materials Research and Standards,American Society for Testing and Materials, pp.232-235(1965).
27.Hardin , B. O. and Drnevich,V. P., ”Shear Modulus and Damping in Soil:Measurement and Parameter Effects,” Journal of Soils Mechanics and Foundations Division, ASCE, Vol.98, No.SM6, pp.603-624(1972).
28.Kokusho, T., ”Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range,” Soils and Foundations,Japanese Society of Soil Mechanics and Foundation Engineering, Vol.20, pp.45-60(1980).
29.李建中,「以動力三軸試驗決定黏土壤之動態性質」,行政院國家科學委員會防災科技研究報告,No. NSC 73-0414-P008-02,中壢(1984)。
30.Steven L. Kramer, Geotechnical Earthquake Engineering, Prentice Hall, New Jersey, pp. 348-422(1996).