跳到主要內容

簡易檢索 / 詳目顯示

研究生: 伍茂仁
Mao-Ren Wu
論文名稱: 以保角映射法為基礎之等效波導理論:理想光波導之設計與分析
Equivalent Waveguide Theory Based on ConformalMapping Method: Design and Analysis of IdealOptical Waveguides
指導教授: 李清庭
Ching-Ting Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 89
語文別: 中文
論文頁數: 179
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提出一個新的等效波導理論,並用以
    研究在傳播方向上有變化的光波導。藉由保角映射的空間轉
    換觀念,我們可以將長直狀光波導轉換成包含彎曲波導、錐
    狀波導及S 形彎曲錐狀波導等各種不同的理想結構。這些理
    想光波導的特性將在論文中被徹底地探討。我們發現理想光
    波導的形狀及折射率變化是具有連續性的。在理想彎曲波
    導,其特徵模的波前在彎角處必須能正確地偏折,以避免幅
    射損失的發生。在理想錐狀波導,其特徵模必須能逐漸而適
    當地轉變,以避免誘發高階模態或幅射損失的發生。這些特
    殊的物理特性將被應用於實際光波導的設計。
    等效波導理論將被更進一步地用於分析光波導。藉由考
    慮波前演化,等效波導理論將結合光束傳播法成為一個新的
    數值工具,並可精確地分析大角度光波導。我們將以此數值
    工具來分析兩種常見的錐狀波導,包含錐狀橫切面波導及固
    定V 值錐狀波導。
    我們將以彎曲波導及Y 形岔狀波導為例,將理想光波導
    的物理機制應用於實際波導的設計。首先,我們提出多重相
    位補償的觀念,並用以設計具有雙尖頂連接狀圓形光柵的低
    損耗彎曲波導。雙尖頂連接狀圓形光柵不僅可以補償在彎角
    處的相位差異,並可避免干擾特徵模態。模擬結果發現,在
    大角度彎曲波導,其特徵模場的波前仍可正確地偏折。在彎
    曲角度達10°的例子中,其能量的傳輸效率仍可達89﹪。
    Y 形岔狀波導在傳播方向上有一個分岔點,因此不可能
    去設計具有連續波導路徑的理想結構。在本論文中,一個考
    量波前演化的相位補償法則將被提出,並用以設計大角度、
    低損耗的Y 形岔狀波導。模擬結果發現,在大角度Y 形分岔
    區域,良好的模態分離及低損耗特性可如預期地達成。在分
    岔角度達20°的例子中,其能量的傳輸效率亦可達89﹪。


    A novel equivalent waveguide theory for studying the longitudinally varying
    waveguides has been proposed in this dissertation. By adopting the space
    transformation concept based on the conformal mapping, a straight optical
    waveguide is transformed into various ideal structures including bends, tapers, and
    S-shaped bent tapers. The characteristics of these ideal optical waveguides are
    thoroughly discussed in the dissertation. The shape and refractive -index distribution
    are continuous in these ideal waveguides. The phase front can be correctly tilted in
    the ideal bent waveguides without any radiation loss. The mode size can also be
    gradually converted in the ideal tapered structures without mode conversion to
    higher-order modes or to radiation modes taking place. These special physical
    properties can be applied to design the practical waveguides.
    Furthermore, the equivalent waveguide theory can be applied to analyze the
    optical waveguides. Considering the phase-front evolution, the equivalent waveguide
    theory is combined the beam propagation method to explicitly analyze the
    wide-angle waveguides. Two kinds of popular tapered waveguides, including the
    cross-sectional dimension tapering and the constant V-number tapering, are used to
    analyze by the combination of conformal mapping method and beam propagation
    method.
    In order to apply the design rule of optical waveguides obtained from the
    analysis of ideal structures, bent waveguides and Y branches are taken as examples.
    First, a low-loss waveguide bend wi th two apexes-linked circle gratings based on the
    concept of multiple phase-compensation is designed. The apexes-linked circle
    gratings not only compensate the phase-difference in the bend corner but also avoid
    distorting the eigenmode. Simulation results predict that the phase front of the
    modal field can be tilted correctly in the wide-angle waveguide bend. The transmitted
    power efficiency can be as high as 89% for bending angle up to 10°.
    Since the Y branch has a branching point in propagation, it is impossible to
    design an ideal Y branch with continuous waveguide path. In the dissertation, a novel
    phase compensation rule is derived by taking the phase front evolution into
    consideration to design the low-loss and wide-angle Y branch. Simulation results
    predict that a perfect mode-separation with low branching losses can be achieved in
    the wide -angle Y-junction branch. The transmitted power efficiency can be as high as
    89% for the branching angle is up to 20°

    i Abstract Contents List of Symbols Table Captions Figure Captions Chapter 1 Introduction 1 Chapter 2 Equivalent Waveguide Theory 8 2-1. Introduction 8 2-2. Equivalent waveguide concepts 11 2-3. Conformation mapping method 15 2-4. Influence of equivalent waveguide on numerical analysis 20 2-4.1. Spatial discretization 20 2-4.2. Beam propagation method 22 2-4.3. CMM-BPM 24 2-4.4. Relation of electric fields in two corresponding spaces 25 2-5. Results and discussion 26 2-5.1. Cross-sectional dimension tapering 27 2-5.2. Constant V-number tapering 30 2-5.3. Wide-angle constant V-number taper 32 ii 2-6. Conclusion 33 Chapter 3 Complete Adiabatic Tapered Waveguides 35 3-1. Introduction 35 3-2. Analysis method 37 3-3. Results and discussion 42 3-3.1. Ideal tapered waveguides 43 3-3.2. Simulation results of transmission characteristics 44 3-3.3. Influence of curved phase-front effect 48 3-4. Conclusion 49 Chapter 4 Lossless Bends in Optical Waveguides 51 4-1. Introduction 51 4-2. Analysis method 54 4-3. Results and discussion 58 4-3.1. Comparing with proposed structures 59 4-3.2. Ideal structures for lossless bends with large bend angle 62 4-3.3. Removing the limitation caused by the radiation caustic 63 4-4. Conclusion 65 Chapter 5 Completely Adiabatic S-Shaped Bent Tapers 67 5-1. Introduction 67 5-2. Theory 68 5-3. Results and discussion 71 5-4. Conclusion 73 Chapter 6 Apexes-Linked Circle Gratings for Low-Loss Waveguide Bends 74 6-1. Introduction 74 6-2. Design rule 76 6-3. Numerical results and discussion 78 6-4. Conclusion 81 Chapter 7 Wide-Angle Low-Loss Y Branches 82 7-1. Introduction 82 7-2. Design and simulation procedure 83 7-3. Summary 89 Chapter 8 Conclusions and Future Work 90 References 94 Publication List 102

    94
    References
    [1] S. E. Miller,“Integrated optics: an introduction,”Bell System Technol. J.,
    vol. 48, pp. 2059-2068, July 1969.
    [2] T. H. Wood,“Multiple quantum well (MQW) waveguide modulators,”J.
    Lightwave Technol., vol. 6, pp. 743-757, Jun. 1988.
    [3] U. Koren, B. I. Miller, T. L. Koch, G. D. Boyd, R. J. Capik, and C. E.
    Soccolich,“Low loss InGaAs/InP multiple quantum well waveguides,”
    Appl. Phys. Lett., vol. 49, pp. 1602-1604, Dec. 1986.
    [4] J. S. Weiner, D. A. B. Miller, D. S. Chemla, T. C. Damen, C. A. Burrus, T. H.
    Wood, A. C. Gossard, and W. Wiegmann,“Strong polarization-sensitive
    electroabsorption in GaAs/AlGaAs quantum well waveguides,”Appl. Phys.
    Lett., vol. 47, pp. 1148-1150, Dec. 1985.
    [5] H. F. Taylor,“Application of guided-wave optics in signal processing and
    sensing,”Proc. IEEE, vol. 75, pp. 1524-1535, Nov. 1987.
    [6] L. Thylen,“Integrated optics in LiNbO3: recent developments in devices for
    telecommunications,”J. Lightwave Technol., vol. 6, pp. 847-861, Jun. 1988.
    [7] B. L. Heffner, D. A. Smith, J. E. Baran, A. Yi-Yan, K. W. Cheung,
    “Integrated-optic acoustically tunable infra-red optical filter,”Electron.
    Lett., vol. 24, pp. 1562-1563, Dec. 1988.
    [8] H. Kogelnik and V. Ramaswamy,“Scaling rules for thin-film optical
    waveguides,”Appl. Opt., vol. 13, pp. 1857-1862, Aug. 1974.
    [9] R. J. Black and C. Pask, “ Developments in the theory of
    equivalent-step-index fibers,”J. Opt. Soc. Am. A., vol. 1, pp. 1129-1131,
    Nov. 1984.
    [10] R. A. Smmut,“Momentary look at noncircular monomode fibers,”Electron.
    95
    Lett., vol. 18, pp. 221-222, Mar. 1982.
    [11] K. S. Chiang,“Analysis of fused couplers by the effective-index method,”
    Electron. Lett., vol. 22, pp. 1221-1222, Nov. 1986.
    [12] M. Munowitz and D. J. Vezzetti,“Numerical procedures for constructing
    equivalent slab waveguides. An alternative approach to effective-index
    theory,”J. Lightwave Technol., vol. 9, pp. 1068-1073, Sept. 1991.
    [13] M. J. Robertson, P. C. Kendall, S. Ritchie, P. W. A. Mcilroy, and M. J.
    Adams,“The weighted index method: a new technique for analyzing planar
    optical waveguides,”J. Lightwave Technol., vol. 7, pp. 2105-2110, Dec.
    1989.
    [14] M. Heiblum and J. H. Harris,“Analysis of curved optical waveguides by
    conformal transformation,”IEEE J. Quantum Electron., vol. 11, pp. 75-83,
    Feb. 1975.
    [15] H. Yanagawa, T. Shimizu, S. Nakamura, and I. Ohyama,
    “Index-and-dimensional taper and its application to photonic devices,”J.
    Lightwave Technol., vol. 10, pp. 587-591, May 1992.
    [16] K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi,“A
    simple laterally tapered waveguide for low-loss coupling to single-mode
    fibers,”IEEE Photon. Technol. Lett., vol. 5, pp. 345-347, Mar. 1993.
    [17] O. Mitomi, K. Kasaya, and H. Miyazawa,“Design of a single-mode tapered
    waveguide for low-loss chip-to-fiber coupling,”IEEE J. Quantum Electron.,
    vol. 30, pp. 1787-1793, Aug. 1994.
    [18] M. D. Feit and J. A. Fleck, Jr.,“Computation of mode properties in optical
    fiber waveguides by a propagating beam method,”Appl. Opt., vol. 19, pp.
    1154-1164, Apr. 1980.
    [19] G. R. Hadley,“Wide-angle beam propagation using Pade approximant
    operators,”Opt. Lett., vol. 17, pp. 1426-1428, Oct. 1992.
    96
    [20] R. P. Ratowsky and J. A. Fleck, Jr.,“Accurate numerical solution of the
    Helmholtz equation by iterative Lanczos reduction,”Opt. Lett., vol. 16, pp.
    787-789, Jun. 1991.
    [21] C. H. Henry and Y. Shani,“Analysis of mode propagation in optical
    waveguide devices by Fourier expression,”IEEE J. Quantum Electron., vol.
    27, pp. 523-530, Mar. 1991.
    [22] J. Gerdes and R. Pregla,“Beam-propagation algorithm based on the method
    of lines,”J. Opt. Soc. Am. B, vol. 8, pp. 389-394, Feb. 1991.
    [23] C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu,“Design and
    analysis of completely adiabatic tapered waveguides by conformal
    mapping,”J. Lightwave Technol., vol. 15, pp. 403-410, Feb. 1997.
    [24] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,
    New York: Academic Press. 1994, p. 77.
    [25] D. Marcuse,“Radiation losses of step-tapered channel waveguides,”Appl.
    Opt., vol. 19, pp. 3676-3681, Nov. 1980.
    [26] R. N. Thurston, E. Kapon, and A. Shahar,“Two-dimensional control of
    mode size in optical channel waveguides by lateral channel tapering,”Opt.
    Lett., vol. 16, pp. 306-308, Mar. 1991.
    [27] D. J. Vezzetti and M. Munowitz, “ Design of strip-loaded optical
    waveguides for low-loss coupling to optical fibers,”J. Lightwave Technol.,
    vol. 10, pp. 581-586, May 1992.
    [28] E. A. J. Marcatili,“Dielectric tapers with curved axes and no loss,”IEEE J.
    Quantum Electron., vol. 21, pp. 307-314, Apr. 1985.
    [29] J. I. Sakai and E. A. J. Marcatili, “ Lossless dielectric tapers with
    three-dimensional geometry,”J. Lightwave Technol., vol. 9, pp. 386-393,
    Mar. 1991.
    [30] R. Weder,“Dielectric three-dimensional electromagnetic tapers with no
    97
    loss,”IEEE J. Quantum Electron., vol. 24, pp. 775-779, May 1988.
    [31] B. Chen, G. L. Tangonan, and A. Lee,“Horn structures for integrated
    optics,”Opt. Commun., vol. 20, pp. 250-252, Feb. 1977.
    [32] W. K. Burns, A. F. Milton, and A. B. Lee,“Optical waveguide parabolic
    coupling horns,”Appl. Phys. Lett., vol. 30, pp. 28-30, Jan. 1977.
    [33] P. G. Suchoski, Jr., and R. V. Ramaswamy,“Constant-width variable-index
    transition for efficient Ti-LiNbO3 waveguide-fiber coupling,”J. Lightwave
    Technol., vol. 5, pp. 1246-1251, Sep. 1987.
    [34] A. A. Lipovskii, “ A taper coupler for integrated optics formed by
    ion-exchange under a non-uniform electric field,”Opt. Commun., vol. 61,
    pp. 11-15, Jan. 1987.
    [35] N. Yamaguchi, Y. Kokubun, and K. Sato,“Low-loss spot-size transformer
    by dual tapered waveguides (DTW-SST),”J. Lightwave Technol., vol. 8, pp.
    587-593, Apr. 1990.
    [36] S. J. Chung and C. H. Chen,“A partial variational approach for arbitrary
    discontinuities in planar dielectric waveguides,”IEEE Trans. Microwave
    Theory Tech., vol. 37, pp. 208-214, Jan. 1989.
    [37] A. Weisshaar and V. K. Tripathi,“Modal analysis of step discontinuities in
    graded-index dielectric slab waveguides,”J. Lightwave Technol., vol. 10,
    pp. 593-602, May 1992.
    [38] R. Baets and P. E. Lagasse,“Calculation of radiation loss in integrated-optic
    tapers and Y-junctions,”Appl. Opt., vol. 21, pp. 1972-1978, Jun. 1982.
    [39] J. Yamauchi, Y. Akimoto, and M. Nibe, and H. Nakano,“Wide-angle
    propagating beam analysis for circularly symmetric waveguides: comparison
    between FD-BPM and FD-TDM,”IEEE Photon. Technol. Lett., vol. 8, pp.
    236-238, Feb. 1996.
    98
    [40] E. G. Neumann and W. Richter,“Sharp bends with low losses in dielectric
    optical waveguides,”Applied Optics, vol. 22, pp. 1016-1022, Apr. 1983.
    [41] S. K. Korotky, E. A. J. Marcatili, and R. H. Bosworth,“Greatly reduced
    losses for small-radius bends in Ti-LiNbO3 waveguides,”Appl. Phys. Lett.,
    vol. 48, pp. 92-94, Jan. 1986.
    [42] M. Majd, B. Schuppert, and K. Petermann,“90° S-bends in Ti-LiNbO3
    waveguides with low losses,”IEEE Photon. Technol. Lett., vol. 5, pp.
    806-808, Jul. 1993.
    [43] I. Mansour and C. G. Someda,“Numerical optimization procedure for
    low-loss sharp bends in MgO co-doped Ti-LiNbO3 waveguides,”IEEE
    Photon. Technol. Lett., vol. 7, pp. 81-83, Jan. 1995.
    [44] F. Ladouceur and P. Labeye,“A new general approach to optical waveguide
    path design,”J. Lightwave Technol., vol. 13, pp. 481-492, Mar. 1995.
    [45] T. Kitoh, N. Takato, M. Yasu, and M. Kawachi,“Bending loss reduction in
    silica-based waveguides by using lateral offsets,”J. Lightwave Technol., vol.
    13, pp. 555-562, Apr. 1995.
    [46] L. M. Johnson and F. J. Leonberger,“Low-loss LiNbO3 waveguide bends
    with coherent coupling,”Optics Lett., vol. 8, pp. 111-113, Feb. 1983.
    [47] T. Shiina, K. Shiraishi, and S. Kawakami,“Waveguide-bend configuration
    with low-loss characteristics,”Optics Lett., vol. 11, pp. 736-738, Nov. 1986.
    [48] K. Hirayama and M. Koshiba,“A new low-loss structure of abrupt bends in
    dielectric waveguides,”J. Lightwave Technol., vol. 10, pp. 563-568, May
    1992.
    [49] H. B. Lin, J. Y. Su, P. K. Wei, and W. S. Wang,“Design and application of
    very low-loss bends in optical waveguides,”IEEE J. Quantum Electron., vol.
    30, pp. 2827-2835, Dec. 1994.
    99
    [50] P. Buchmann and H. Kaufmann,“GaAs single-mode rib waveguides with
    reactive ion-etched totally reflecting corner mirrors,”J. Lightwave Technol.,
    vol. 3, pp. 785-788, Aug. 1985.
    [51] T. Tamir, Guided-Wave Optoelectronics, Berlin: Springer-Verlag, 1989, p.
    95.
    [52] M. Yanagisawa, Y. Yamada, and M. Kobayashi, “ Low-loss and
    large-tolerance fiber coupling of high-∆ silica waveguides by local
    mode-field conversion,”IEEE Photon. Technol. Lett., vol. 4, pp. 433-435,
    Apr. 1993.
    [53] G. R. Hadley, “ Design of tapered waveguides for improved output
    coupling,”IEEE Photon. Technol. Lett., vol. 5, pp. 1068-1070, Sept. 1993.
    [54] R. Zengerle, O. Leminger, W. Weiershausen, K. Faltin, and B. H ubner,
    “Laterally tapered InP-InGaAsP waveguides for low-loss chip-to-fiber butt
    coupling: a comparison of different configurations,”IEEE Photon. Technol.
    Lett., vol. 7, pp. 532-534, May 1995.
    [55] J. M. Hsu and C. T. Lee, “Systematic design of novel wide-angle low-loss
    Y-junction waveguides,” IEEE J. Quantum Electron., vol. 34, pp. 673-679,
    Apr. 1998.
    [56] C. T. Lee and J. M. Hsu, “Systematic design of microprism-type low-loss
    step-index bent waveguides,” Appl. Opt., vol. 37, pp. 3948-3953, Jun. 1998.
    [57] C. T. Lee and J. M. Hsu, “Systematic design of full phase compensation
    microprism-type low-loss bent waveguides,” Appl. Opt., vol. 37, pp.
    507-509, Jan. 1998.
    [58] C. T. Lee, M. L. Wu, and J. M. Hsu, “Beam propagation analysis for tapered
    waveguides: taking account of curved phase-front effect in paraxial
    approximation,” J. Lightwave Technol., vol. 15, pp. 2183-2189, Nov. 1997.
    [59] M. Hoffmann, P. Kopka, and E. Voges, “Low-loss fiber-matched
    low-temperature PECVD waveguides with small-core dimensions for optical
    100
    communication systems,” IEEE Photon. Technol. Lett., vol. 9, pp.
    1238-1240, Sept. 1997.
    [60] R. M. Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers,
    “Silicon oxynitride planar waveguiding structures for application in optical
    communication,” IEEE J. Select. Topics Quantum Electron., vol. 4, pp.
    930-937, Nov./Dec. 1998.
    [61] H. Sasaki and N. Mikoshiba,“Normalized power transmission in single
    mode optical branching waveguides,”Electron. Lett., vol. 17, pp. 136-138,
    Feb. 1981.
    [62] O. Hanaizumi, M. Miyagi, and S. Kawakami, “ Low radiation loss
    Y-junctions in planar dielectric optical waveguides,”Opt. Commun., vol. 51,
    pp. 236-238, Sept. 1984.
    [63] W. Y. Hung, H. P. Chan, and P. S. Chung,“Novel design of wide-angle
    single-mode symmetric Y-junction,”Electron. Lett., vol. 24, pp. 1184-1185,
    Sept. 1988.
    [64] H. Hatami-Hanza, P. L. Chu, and M. J. Lederer,“ A new low-loss
    wide-angle Y-branch configuration for optical dielectric slab waveguides,”
    IEEE Photon. Technol. Lett., vol. 6, pp. 528-530, Apr. 1994.
    [65] M. Rangaraj, M. Minakata, and S. Kawakami,“Low loss integrated optical
    Y-branch,”J. Lightwave Technol., vol. 7, pp. 753-758, May 1989.
    [66] S. Safari-Naeini, Y. L. Chow, S. K. Chaudhuri, and A. Goss,“Wide-angle
    phase-corrected Y-junction of dielectric waveguides for low-loss
    applications,”J. Lightwave Technol., vol. 11, pp. 567-576, Apr. 1993.
    [67] H. Hantami-Hanza, M. J. Lederer, P. L. Chu, and I. M. Shinner,“A novel
    wide-angle low-loss dielectric slab waveguide Y-branch,”J. Lightwave
    Technol., vol. 12, pp. 208-213, Feb. 1994.
    [68] F. S. Chu and P. L. Liu,“Low-loss coherent-coupling Y branches,”Opt.
    101
    Lett., vol. 16, pp. 309-311, Mar. 1991.
    [69] H. B. Lin, R. S. Cheng, and W. S. Wang,“Wide-angle low-loss single-mode
    symmetric Y-junctions,”IEEE Photon. Technol. Lett., vol. 6, pp. 825-827,
    Jul. 1994.
    [70] M. L. Wu, P. L. Fan, J. M. Hsu, and C. T. Lee,“Design of ideal structures
    for lossless bends in optical waveguides by conformal mapping, ” J.
    Lightwave Technol., vol. 14, pp. 2604-2614, Nov. 1996.
    [71] P. L. Fan, M. L. Wu, and C. T. Lee,“Analysis of abrupt bent waveguides by
    the beam propagation method and the conformal mapping method,”J.
    Lightwave Technol., vol. 15, pp. 1026-1031, June. 1997.

    QR CODE
    :::