跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳品豪
Pin-Hao Chen
論文名稱: Nafion改質雙馬來醯亞胺複合薄膜 於鹼性乙醇燃料電池的應用
指導教授: 諸柏仁
Peter Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: Nafion鹼性燃料電池乙醇
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鹼性燃料電池是近年來研究的重點之一,這是因為鹼性中可使用非白金觸媒,
    有望降低價格。但在薄膜上卻仍欠缺足夠功能的商用材料。薄膜最主要功能為傳
    遞離子和阻礙燃料竄透,目前有多種膜材系統廣為研究,如陰離子交換膜(Anion
    Exchange Membrane AEM)、陽離子交換膜(Cathion Exchange Membrane , CEM) 和 聚苯咪唑膜 (Alkali doped PBI)。如果使用陰離子交換樹酯因化學穩定因素無法在高溫燃料電池使用。本研究選用在高溫下化性及機械性穩定的陽離子交換膜進行開發,因為導電度不佳的缺點可以透過改質添加另一材料來改善的。本研究的設計是在 Nafion 薄膜中以 K+ 陽離子交換,並在膜材中加入物理高分岐的雙馬來醯亞胺的聚合物。帶有鹼基的結構可以將水分和 OH- 保留在膜中,進而在高溫時仍保有導電度,另外,高分歧結構也可以在孔道中有效阻絕燃料的竄透;此膜的設計同時改善了乙醇竄透和高溫下低濕度的導電度。研究中製備兩種系列的K-Nafion 膜其中所包含的單體雙馬來醯亞胺(BMI)和寡聚物(mBMI)的摩爾比為 28:72(mBMI(72))與 2:98(MBMI(98))。不同添加量和不同的組成對膜材的物性所造成的影響為本研究探討的重點。
    實驗上先使用 SEM、TEM、XRD、TGA 和 DSC 比較不同分岐長度雙馬來醯
    亞胺 mBMI(72))和 mBMI(98)的 K-Nafion 改質膜的結構分析,以及薄膜導電度和竄透性能比較。離子導電度在去離子水中可達約 0.025 S/cm,在 1M KOH 約 0.43 S/cm。由實驗結果得知 mBMI 複合膜的離子導電度明顯增加,且在低濕度條件下(低於 40%RH)的導電度甚至可高於 K-Nafion。含有 mBMI 的陽離子交換膜(5%-mBMI(72)/K-Nafion) 顯 示 乙 醇 滲 透 率 降 低 到 2.38×10-7cm2/s 。 特 別 是5%-mBMI(72)的膜材其選擇性(C/P)高於 K-Nafion 薄膜。此膜在鹼性溶液(KOH)濃度增加到 8M 時仍保持高度化學穩定性。此一複合膜(5%-mBMI(72)/K-Nafion)使用於鹼性乙醇燃料電池在 90℃下效能為 65 mW/cm2 優於 K-Nafion 膜(60 mW/cm2)。從實驗的結果可以證明此類型的薄膜可有效運用於鹼性燃料電池中。


    Alkaline fuel cell is one of the major thrust of fuel cell research in recent years, because it offers better opportunity to use non-platinum based catalyst, with potential of lowering the prices. But a suitable membrane for alkali fuel cell is still absent from the market. A main function of the membrane allows ions to pass but hinders fuel permeability. Variety of membranes systems are being explored which
    include anion exchange membranes (AEM), cation exchange membranes (CEM) and polyphenylene imidazole membranes (Alkali doped PBI). In the case of anion exchange membranes, its low thermal stability and the tendency to loss alkalie functional group precludes its application in fuel cells to operate at high temperature. In this study we will focus on modification of Nafion-based cation exchange membrane, because it offers both durability and mechanical stability at high
    temperature. Its main disadvantage, i.e. the low electrical conductivity, can be improved relatively easily by blending with a alkali functionalized moiety. Our design is to physically cross-linke Alkalie (K+ ) exchanged Nafion with bismaleic
    imide hyper-branched polymer. This composite membrane shows good conductivity at elevated high temperatures because the hyper-branched oligomer bears base
    functions augments OH- transport in the membrane; effectively blocked the fuel permeation while preserving water at elevated temperature to sustain high ion conductivity. As a result, the composite membranes simultaneously improved both the conductivity in low humidity (or at elevated temperature) and reduce permeability of ethanol. In this study, physical and electronic properties of the two series of
    K-Nafion samples containing Bismaleimide (BMI) monomer and modified Bismaleimide oligomers (mBMI) with mole ratios of 28:72 (mBMI(72)) and 2:98 (mBMI(98)) are compared in detail by SEM, TEM, XRD and TGA analyses. The ionic conductivity works upward to 0.25 S/cm in DI water and 0.43 S/cm in 1M KOH at room temperature. The improvement of ion conductivity is more pronounced at low
    humidity conditions where the conductivity maintains about one order higher than that of recast K-Nafion below 40% RH and shows continuous increase when temperature is
    raised above 80oC. These series of cation exchange membranes contain mBMI show alcohol barrier property where ethanol permeability is substantially reduced to
    2.38×10-7 cm2/s in the case of mBMI(72)/K-Nafion. Selectivity(C/P ratio) of the membrane with mBMI is also higher than the recast K-Nafion membrane, especially in
    the case of 5%-mBMI(72). Under air atmosphere, these membranes are stable in basic media with KOH concentration up to 8 M. Performance of composite membrane (5%-mBMI (72) / K-Nafion) in the ethanol fuel cell at 90℃ is about 65 mW/cm2 which is higher than K-Nafion membrane (60 mW/cm2). The results shows the hyperbranch composite membranes can be effectively applied to alkaline fuel cells
    with more pronounced effects at elevated temperature.

    V 目錄 中文摘要 ......................................................................................................................... I 英文摘要 ........................................................................................................................ II 目錄 ................................................................................................................................ V 圖目錄 ........................................................................................................................ VIII 表目錄 .......................................................................................................................... XI 第一章 緒論 ................................................................................................................... 1 1-1 前言 .................................................................................................................. 1 第二章 文獻回顧 ........................................................................................................... 4 2-1 鹼性燃料電池介紹及最新發展 ...................................................................... 4 2-2 三種鹼性薄膜之優缺點 .................................................................................. 9 2-3 陽離子交換薄膜物性探討 ............................................................................ 15 2-4 薄膜的傳導機制 ............................................................................................ 19 2-5 Nafion 薄膜的探討 ...................................................................................... 22 2-6 無機物添加薄膜的改質 ................................................................................ 26 第三章 實驗方法與原理 ............................................................................................. 33 3-1 實驗藥品 ........................................................................................................ 33 3-2 實驗步驟 ........................................................................................................ 34 3-2-1 高分岐鏈鍵結雙馬來醯亞胺合成步驟 .............................................. 34 3-2-2 交聯型固態高分子電解質薄膜之製備 .............................................. 35 3-3 實驗儀器原理及介紹 .................................................................................... 36 3-3-1 核磁共振儀(Nuclear Magnetic Resonance, NMR) ............................. 36 3-3-2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) ............... 36 3-3-3 穿透式電子顯微鏡(Tunneling Electron Microscopy, TEM) .............. 37 VI 3-3-4 X 光散射光譜儀(X-Ray Diffraction, XRD) ..................................... 38 3-3-5 熱重分析儀 (Thermal Gravimetric Analysis, TGA) .......................... 39 3-3-6 熱示差掃瞄卡量計 (Differential Scanning Calorimeter, DSC) ........ 39 3-3-7 薄膜吸水量 (Water Uptake) 與膨潤 (Swelling) .............................. 40 3-3-8 乙醇竄透率 (Methanol permeability) ................................................ 41 3-3-9 交流阻抗儀(AC-impedance) ............................................................... 42 3-3-10 燃料電池效能測試 ............................................................................ 44 第四章 結果與討論 ..................................................................................................... 45 4-1 添加不同分岐長度的雙馬來醯亞胺複合薄膜性質探討 ............................ 46 4-1-1 NMR 聚合程度分析 .......................................................................... 46 4-1-2 不同分岐長度 mBMI 的複合薄膜外觀 ............................................. 49 4-1-3 SEM 薄膜微結構影像....................................................................... 50 4-1-4 TEM 微結構鑑定 .............................................................................. 52 4-1-5 XRD 薄膜結晶度分析 ...................................................................... 53 4-1-6 TGA 熱穩定性探討........................................................................... 55 4-1-7 DSC 保水性質分析 ........................................................................... 58 4-1-8 保水性及膨潤性質比較 ...................................................................... 59 4-1-9 導電度與乙醇竄透率比較 .................................................................. 60 4-1-10 Selectivity 薄膜選擇性 ................................................................... 62 4-1-11 變濕導電度分析 ................................................................................ 63 4-2 取較佳分岐長度的雙馬來醯亞胺,添加不同比例量對複合薄膜的性質探 討 ............................................................................................................................ 64 4-2-1 相同分岐長度 mBMI,不同含量的複合薄膜外觀 .......................... 64 4-2-2 SEM 薄膜微結構影像....................................................................... 65 4-2-3 TEM 微結構鑑定 .............................................................................. 67 4-2-4 XRD 薄膜結晶度分析 ...................................................................... 68 4-2-5 TGA 熱穩定性探討........................................................................... 69 4-2-6 DSC 保水性質分析 ........................................................................... 70 4-2-7 保水性及膨潤性質比較 ...................................................................... 72 4-2-8 導電度與乙醇竄透率比較 .................................................................. 73 4-2-9 Selectivity 薄膜選擇性 ..................................................................... 75 4-2-10 變濕導電度與變溫導電度分析 ........................................................ 76 4-2-11 在 KOH 溶液中的穩定性 ................................................................. 78 4-2-12 鹼性直接乙醇電池效能測試 ............................................................ 79 第五章 結論與未來展望 ............................................................................................. 81 參考文獻 ....................................................................................................................... 83

    1. TIAX, Cost Analysis of Fuel Cell Systems for Transportation. 2004: p. 1-25.

    2. Géraldine Merle, Matthias Wessling, Kitty Nijmeijer, Anion exchange
    membranes for alkaline fuel cells: A review. Journal of Membrane Science,
    2011. 377(1-2): p. 1-35.

    3. Giilzow, Erich, Alkaline fuel cells: a critical view Journal of Power Sources,
    1996. 61: p. 99-104

    4. E. Gülzow, M. Schulze, Long-term operation of AFC electrodes with CO2
    containing gases. Journal of Power Sources, 2004. 127(1-2): p. 243-251.

    5. http://www.ck365.cn/baike/1/976.html,
    中國測控網
    .

    6. Y.S. Li, T.S. Zhao, Z.X. Liang, Performance of alkaline
    electrolyte-membrane-based direct ethanol fuel cells. Journal of Power Sources,
    2009. 187(2): p. 387-392.

    7. L. An, T.S. Zhao, Q.X. Wu, L. Zeng, Comparison of different types of
    membrane in alkaline direct ethanol fuel cells. International Journal of
    Hydrogen Energy, 2012. 37(19): p. 14536-14542.

    8. Hongying Hou, Suli Wang, Wei Jin, Qian Jiang, Lili Sun, Luhua
    Jiang ,Gongquan Sun, KOH modified Nafion112 membrane for high
    performance alkaline direct ethanol fuel cell. International Journal of Hydrogen
    Energy, 2011. 36(8): p. 5104-5109.

    9. www.omega.com, About Conductivity.

    10. Xuan Chenga, Zheng Shi, Nancy Glass, Lu Zhang, Jiujun Zhanga, and
    Zhong-Sheng Liu Datong Song, HaijiangWang, Jun Shen, A review of PEM
    hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation.
    Journal of Power Sources, 2007. 165(2): p. 739-756. 84

    11. Hongying Hou, Gongquan Sun, Ronghuan He, Baoying Sun, and He Liu Wei
    Jin, Qin Xin, Alkali doped polybenzimidazole membrane for alkaline direct
    methanol fuel cell. International Journal of Hydrogen Energy, 2008: p.
    7172-7176.

    12. E.D. Wang, T.S. Zhao, W.W. Yang, Poly (vinyl alcohol)/3-(trimethylammonium)
    propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel
    cells. International Journal of Hydrogen Energy, 2010. 35(5): p. 2183-2189.

    13. Pal M. Sipos, Glenn Hefter, and Peter M. May, Viscosities and Densities of
    Highly Concentrated Aqueous MOH Solutions (M+)Na+,K+,Li+,Cs+,
    (CH3)4N+) at 25.0 °C. J. Chem. Eng, 2000. 45: p. 613-617.

    14. H. Cheng, K. Scott, Influence of operation conditions on direct borohydride fuel
    cell performance. Journal of Power Sources, 2006. 160(1): p. 407-412.

    15. B. Xing, O. Savadogo, Hydrogen/oxygen polymer electrolyte membrane fuel
    cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI).
    Electrochemistry Communications, 2000. 2: p. 697-702.

    16. Junfeng Zhou, Murat Unlu, Jose A. Vega, Paul A. Kohl, Anionic polysulfone
    ionomers and membranes containing fluorenyl groups for anionic fuel cells.
    Journal of Power Sources, 2009. 190(2): p. 285-292.

    17. Manabu Tanaka, Keita Fukasawa, Eriko Nishino, Susumu Yamaguchi,Koji
    Yamada, Hirohisa Tanaka, Byungchan Bae, Kenji Miyatake, Masahiro
    Watanabe, Anion conductive block poly(arylene ether)s: synthesis, properties,
    and application in alkaline fuel cells. J Am Chem Soc, 2011. 133(27): p.
    10646-54.

    18. Shuai Xu, Gang Zhang, Yang Zhang, Chengji Zhao, Liyuan Zhang, Mingyu Li,
    Jing Wang, Na Zhang, Hui Na, Cross-linked hydroxide conductive membranes
    with side chains for direct methanol fuel cell applications. Journal of Materials 85

    Chemistry, 2012. 22(26): p. 13295.

    19. Shuqin Song, Weijiang Zhou, Zhenxing Liang, Rui Cai, Gongquan Sun, Qin
    Xin, Vaios Stergiopoulosc, Panagiotis Tsiakaras, The effect of methanol and
    ethanol cross-over on the performance of PtRu/C-based anode DAFCs. Applied
    Catalysis B: Environmental, 2005. 55(1): p. 65-72.

    20. Miaomiao Han, Gang Zhang, Zhongguo Liu, Shuang Wang, Mingyu Li, Jing
    Zhu, Hongtao Li, and Christopher M. Lewb Yang Zhang, Hui Na, Cross-linked
    polybenzimidazole with enhanced stability for high temperature proton
    exchange membrane fuel cells. Journal of Materials Chemistry, 2011. 21(7): p.
    2187.

    21. Ronghuan He, Qingfeng Li, Anders Bach, Jens Oluf Jensen, Niels J. Bjerrum,
    Physicochemical properties of phosphoric acid doped polybenzimidazole
    membranes for fuel cells. Journal of Membrane Science, 2006. 277(1-2): p.
    38-45.

    22. Iwai Yasunori, Yamanishi Toshihiko, Thermal stability of ion-exchange Nafion
    N117CS membranes. Polymer Degradation and Stability, 2009. 94(4): p.
    679-687.

    23. Liang An, T. S. Zhao, Yinshi Li and Qixing Wu, Charge carriers in alkaline
    direct oxidation fuel cells. Energy & Environmental Science, 2012. 5(6): p.
    7536.

    24. Liang An, T. S. Zhao, An alkaline direct ethanol fuel cell with a cation
    exchange membrane. Energy & Environmental Science, 2011. 4(6): p. 2213.

    25. Moore, Kenneth A. Mauritz* and Robert B., State of
    Understanding of Nafion.
    Chem. Rev., 2004. 104: p. 4535-4585.

    26. Guillaume Couture, Ali Alaaeddine, Frédéric Boschet, Bruno Ameduri ∗ ,
    Polymeric materials as anion-exchange membranes for alkaline fuel cells. 86

    Progress in Polymer Science, 2011. 36(11): p. 1521-1557.
    27. A K SAHU, S PITCHUMANI, P SRIDHAR and A K SHUKLA, Nafion and
    modified-Nafion membranes for polymer electrolyte fuel cells: An overview.
    2009. 32: p. 285-294.
    28. Comstock, M. Joan, Perfluorinated Ionomer Membranes, Copyright, ACS
    Symposium Series, FOREWORD. 1982. 180.
    29. D. Rivin, C.E. Kendrick, P.W. Gibson, N.S. Schneider, Solubility and transport
    behavior of water and alcohols in Nafio. Polymer, 2001. 42: p. 623-635.
    30. Chia-Hung Ma, T. Leon Yu, Hsiu-Li Lin, Yu-Ting Huang, Yi-Ling Chen, U-Ser
    Jeng,Ying-Huang Lai, Ya-Sen Sun, Morphology and properties of Nafion
    membranes prepared by solution casting. Polymer, 2009. 50(7): p. 1764-1777.
    31. Peter P. Chua, Chien-Shun Wu, Po-Chun Liu , Tsung-Hsiung Wang , Jin-Ping
    Pan, Proton exchange membrane bearing entangled structure: Sulfonated
    poly(ether ether ketone)/bismaleimide hyperbranch. Polymer, 2010. 51(6): p.
    1386-1394.
    32. Jinli Qiao, Jing Fu, Rui Lin, Jianxin Ma, Jianshe Liu, Alkaline solid polymer
    electrolyte membranes based on structurally modified PVA/PVP with improved
    alkali stability. Polymer, 2010. 51(21): p. 4850-4859.

    33. Chun-Chen Yang, Shwu-Jer Chiu, Kuo-Tong Lee,Wen-Chen Chien, and
    Ching-An Huang Che-Tseng Lin, Study of poly(vinyl alcohol)/titanium oxide
    composite polymer membranes and their application on alkaline direct alcohol
    fuel cell. Journal of Power Sources, 2008. 184(1): p. 44-51.

    34. Yuan-Cheng Cao, Keith Scott, Xu Wang, Preparation of
    polytetrafluoroethylene porous membrane based composite alkaline exchange
    membrane with improved tensile strength and its fuel cell test. International
    Journal of Hydrogen Energy, 2012. 37(17): p. 12688-12693.

    35. Fengxiang Zhang, Huamin Zhang, Chao Qu, Imidazolium functionalized
    polysulfone anion exchange membrane for fuel cell application. Journal of
    Materials Chemistry, 2011. 21(34): p. 12744.

    36. P.L Antonuccia, A.S Aricòb, P Cretı̀b, E Ramunnic, V Antonuccib, Investigation
    of a direct methanol fuel cell based on a composite Nafion -silica electrolyte for
    high temperature operation. Solid State Ionics, 1999. 125: p. 431–437.

    37. Weilin Xu, Tianhong Lu, Changpeng Liu,Wei Xing, Low methanol permeable
    composite Nafion/silica/PWA membranes for low temperature direct methanol
    fuel cells. Electrochimica Acta, 2005. 50(16-17): p. 3280-3285.

    QR CODE
    :::