| 研究生: |
吳柏頡 Po-Chieh Wu |
|---|---|
| 論文名稱: |
牙科矯正釘於不同植入參數之生物力學影響 |
| 指導教授: |
黃俊仁
Jiun-Ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 矯正釘 、有限元素法 、等向性 、正交性 、骨整合 |
| 外文關鍵詞: | Orthodontic, Mini-Screw, Isotropic,, Orthogonality, |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,矯正釘植入為齒顎矯正最常搭配的治療方式之一。矯正釘植入的失敗率約為20%。手術失敗的原因很多,最主要是穩定度。除了患者本身的問題外,矯正釘的設計、材質、植入角度及受力方向都與穩定度有關。本研究將針對影響矯正釘植體穩定度的一些重要因素作探討。在臨床上,矯正釘的植入角度及受力方式非常多元,本研究模擬分析時分成三種植入角度(90°、60°、30°),搭配8種不同的受力方向。骨頭的材料性質分別設定為等向性或正交性,以進行比較。矯正釘植入後便會立即開始使用,矯正釘與骨頭之結合可分成兩個階段。第一階段為剛植入時是屬於未骨整合狀態,隨後由於骨頭隨時間逐漸生長到植體上,會進入第二階段骨整合狀態。在判別植體穩定度的指標方面則採用矯正釘及骨頭的位移、等效應力及等效應變。此外,本研究進行矯正釘植體的側向彎曲模擬分析及實驗,瞭解植體的勁度,並提出人造骨白化現象的分析模型修正方式。
研究結果顯示,矯正釘的位移在植入角度為90°時最大,在30°時最小。矯正釘受力方向要避免與植入角度垂直,否則容易造成矯正釘位移及骨頭最大主應力過大,導致穩定度下降。骨頭採用正交性材料性質的結果在趨勢上是比較接近實際狀況,採用等向性材料性質的結果會被低估。在骨整合狀態下,骨頭的最大主應力比較大,但並沒有超過抗拉強度,不會造成骨頭破壞。在未骨整合狀態下,矯正釘的位移比較大,骨頭的等效應變超過了3000 με,會降低骨整合的程度,說明此狀態穩定度較差。矯正釘與骨頭受力反應之對稱性,此現象可用以簡化後續的模擬分析,只需要分析受力方向0°~180°,即可推測受力方向180°~360°的結果。若不考慮人造骨在植入矯正釘時產生的白化現象,則矯正釘植體勁度的模擬值明顯大於實驗值。本研究提出修正模型,調整模型的白化層區域大小及降低此區的楊氏模數,可使模擬分析的勁度值與實驗值相近。
In recent years, orthodontic miniscrew implantation is one of the most commonly used methods of orthodontic treatment. The failure rate of miniscrew implantation is about 20%. There are many reasons for failure, the most important being stability. In addition to the patient's own problems, the design, material, implant angle and loading direction of the miniscrew are related to the stability. In this study, some important factors affecting the stability of miniscrew implants were discussed. Clinically, the implantation angle and loading mode of the miniscrew are very diverse. The simulation analysis in this study was divided into three implant angles (90°, 60° and 30°), with eight different loading directions. The material properties of the bones were set as isotropic or orthogonality, respectively, for comparison. Immediately after the insertion of the miniscrew, the fixation of the miniscrew to the bone can be divided into two stages. The first stage is the state of non-osseointegration at the time of implantation, and then the bone gradually grows into the implant over time and enters the second stage of osseointegration. The index of stability of implant was the deformation, equivalent stress and equivalent strain of miniscrew and bone. In addition, the lateral bending simulation analysis and experiment of the miniscrew implant were carried out to understand the stiffness of the implant, and the method of modifying the analytical model of artificial bone albinism was proposed.
The results showed that the deformation of the miniscrew was maximum at the implantation angle of 90° and minimum at 30°. The loading direction of the miniscrew should not be perpendicular to the implantation angle, otherwise it is easy to cause larger deformation of the miniscrew and larger maximum principal stress of the bone, resulting in the decrease of stability. The results of orthogonality in bone properties tend to be close to reality, while those of isotropy are underestimated. The displacement of the miniscrew is relatively large in the non-osseointegration state. In the state of osseointegration, the maximum principal stress of bone is relatively large. It shows that the stability of the miniscrew is poor without osseointegration. The simulated values of implant stiffness were significantly higher than the experimental values without considering the influence of bone autogenous layer. In this study, a modified model was proposed to adjust the size of the whitening area of the model and reduce the Young's modulus of this area, so as to make the simulated stiffness value close to the experimental value.
[1] 陳懿,陳羿貞,「比較傳統口外錨定與迷你植體錨定於成年患者上顎齒槽前突之矯正治療結果」,碩士論文,國立台灣大學,民國95年。
[2] http://www.pittortho.com.tw/service_ortho15.htm
[3] https://blog.xuite.net/drsuortho/twblog/153703089
[4] https://blog.xuite.net/drsuortho/twblog/153703160
[5] http://www.kmuh.org.tw/www/kmcj/data/10807/14.htm
[6] https://www.allaboutsmilesortho.com/headgear/
[7] 伍紹鈞,「人工髖關節有限元素分析之整合介面開發」,中華大學,碩士論文,民國93年。
[8] 余欣儒,「有限元素法評估之新設計之頸部模組化股骨柄」,國立台北科技大學,碩士論文,民國104年。
[9] 陳雲玉,「有限元素法評估之新設計之頸部模組化股骨柄」,國立台灣科技大學,碩士論文,民國104年。
[10] 張筱偉,「逆行骨釘與鎖定骨板治療近人工膝關節骨折之有限元素比較」,國立交通大學,碩士論文,民國99年。
[11] 王俊翔,「顳顎關節盤之生物力學探討:三圍有限元素法分析」,國立成功大學,碩士論文,民國101年。
[12] 張弘學,「有限元素法評估之新設計之頸部模組化股骨柄」,國立陽明大學,碩士論文,民國94年。
[13] 蔡育銓,「腳踝矯形支架之有限元素分析與設計」,國立成功大學,碩士論文,民國98年。
[14] 魏妙俶,「血管支架之有限元素分析與設計」,國立成功大學,碩士論文,民國94年。
[15] 陳怡龍,「中空型骨釘及側孔型骨鬆用椎根骨釘的力學行為分析」,國立陽明大學,碩士論文,民國105年。
[16] 蕭文田,「牙周病菌於人工牙根之生物力學與心血管支架之血液流體動力學之整合性研究」,台北醫學大學,博士論文,民國104年。
[17] 陳筆人,「三維有限元素法模擬微牙根植體在上顎骨靠近牙齒根部所產生靜態與動態應力分布行為之研究」,國立虎尾科技大學,碩士論文,民國101年。
[18] 黃振棠,「人工牙根與之台齒之最佳化疲勞分析」,國立高雄科技大學,碩士論文,民國108年。
[19] 陳柏宏,「鈦合金(Ti6Al4V)與不鏽鋼(Stainless 316L)自鑽型矯正釘應用於牙齒矯正效能分析之研究」,國立高雄應用科技大學,碩士論文,民國101年。
[20] 廖炯琳,「迷你骨釘錨定用於雙顎前途患者之治療結果:各種骨釘錨定設置之比較」,長庚大學,碩士論文,民國98年。
[21] 葉俊杰,「齒顎矯正錨定骨釘之設計」,國立台北科技大學,碩士論文,民國97年。
[22] A. P. Bozkurt, “Effects of mechanical vibration on miniscrew implants and bone: FEM analysis,” International Orthodontics, Vol. 17, pp. 38–44, Mar. 2019.
[23] O. P. Kharbanda, N. Bhatnagar, V. D. Samrit, A. Kumar, S. Yadav, S. Anand, “Geometrical effects of orthodontic miniscrew implants and resulting distortion stresses in a simulated bone model for different applied forces: An FEM study,” ResearchGate, Jan. 2020.
[24] S. Singh, S. Mogra, V. S. Shetty, S. Shetty, and P. Philip, “Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: A conical, self-drilling miniscrew implant system,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 141, Iss. 3, Pages 327-336, Mar. 2012.
[25] M. C. Castaño, U. Zapata, A. Pedroza, J. D. Jaramillo, S. Roldán, “Creation of a three-dimensional model of the mandible and the TMJ in vivo by means of the finite element method,” International Journal of Computerized Dentistry, Vol. 5, Iss. 2-3, pp. 87-99, 2002.
[26] U. Wolfram, J. Schwiedrzik, “Post-yield and failure properties of cortical bone,” BoneKEy Reports 5, Article number: 829, 2016.
[27] C. Teekavanich, M. Uezono, K. Takakuda, T. Ogasawara , P. Techalertpaisarn and K. Moriyama , “Evaluation of cortical bone microdamage and primary stability of orthodontic miniscrew using a human bone analogue,” Materials 2021, Vol. 14(8), 1825, February 2021.
[28] C.-L. Lin, J.-H. Yu, H.-L. Liu, C.-H. Lin, Y.-S. Lin, “Evaluation of contributions of orthodontic mini-screw design factors based on FE analysis and the Taguchi method,” Journal of Biomechanics, Vol. 43, pp. 2174–2181, Mar. 2010.
[29] A. H. S. Haghighi , V. Pouyafar , A. Navid, M. Eskandarinezhad , T. Abdollahzadeh Baghaei , “Investigation of the optimal design of orthodontic mini-implants based on the primary stability: A finite element analysis,” Journal of Dental Research, Dental Clinics, Dental Prospects, Spring 2019, Vol. 13, Iss. 2, pp. 85-89, Aug. 2019.
[30] M. Motoyoshi, M. Inaba, A. Ono, S. Ueno, N. Shimizu, “The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone,” International Journal of Oral and Maxillofacial Surgery, Surg. 2009, Vol. 38, pp. 13–18, Sept. 2008.
[31] A. Suzuki, T. Masuda, I. Takahashi, T. Deguchi, O. Suzuki, T. T. Yamamoto, “Changes in stress distribution of orthodontic miniscrews and surrounding bone evaluated by 3-dimensional finite element analysis,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 140, Iss. 6, pp. e273-80, Dec. 2011.
[32] M. Cozzani, L. Nucci, D. Lupini, H. Dolatshahizand, D. Fazeli, E. Barzkar, E. Naeini, A. Jamilian, “The ideal insertion angle after immediate loading in Jeil, Storm, and Thunder miniscrews: A 3D-FEM study,” International Orthodontics 2020, Vol. 18, pp. 503–508, May 2020.
[33] A. N. Omar, S. S. Marwa, H. M. Shaza, “Effect of cortical bone thickness, insertion angle and force direction variations on miniscrew and surrounding bone: A finite element study,” IOSR Journal of Dental and Medical Sciences, e-ISSN: 2279-0853, p-ISSN: 2279-0861, Vol. 18, Iss. 11 Ser.9, pp 22-29, Nov. 2019.
[34] L. Zhao, Z. Xu, X. Wei, L. Zhang, J. Li, T. Tang, “Effect of placement angle on the stability of loaded titanium microscrews: A microcomputed tomographic and biomechanical analysis,” Original Article Vol. 139, Iss. 5, pp. 628-635, May 2011.
[35] T.-C. Liu , C.-H. Chang, T.-Y. Wong, J.-K. Liu, “Finite element analysis of miniscrew implants used for orthodontic anchorage,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 141, Iss. 4, pp. 468-76, Apr. 2012.
[36] S.-H. Cho, S.-J. Kim, K.-J. Lee, S.-J. Sung, Y.-S. Chun, C.-J. Hwang, “Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles,” Korean Journal of Orthodontics, Vol. 46, Iss. 4, pp. 189-98, July 2016.
[37] R. Duaibis, B. Kusnoto, R. Natarajan, L. Zhao, C. Evans, “Factors affecting stresses in cortical bone around miniscrew implants: A three-dimensional finite element study,” The Angle Orthodontist, Vol. 82, Iss. 5, pp. 875-80, Sept. 2012.
[38] N. Woodall, S. C. Tadepalli, F. Qian, N. M. Grosland, S. D. Marshall, and T. E. Southard, “Effect of miniscrew angulation on anchorage resistance,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 139, pp. e147-e152, Mar. 2011.
[39] F. M. Dastenaei, A. Hajarian, O. Zargar, M. M. Zand, S. Noorollahian, “Effects of thread shape on strength and stability of dental miniscrews against orthodontic forces,” Procedia Manufacturing, Vol. 35, pp. 1032–1038, 2019.
[40] L. Perillo, A. Jamilian, A. Shafieyoon, H. Karimi ,M. Cozzani, “Finite element analysis of miniscrew placement in mandibular alveolar bone with varied angulations,” European Journal of Orthodontics, pp. 56–59, 2015.
[41] G. Zhou, X. Zhang, H. Qie, C. Li, L. Lu, L. Shan, “Three-dimensional finite element analysis of the stability of mini-implants close to the roots of adjacent teeth upon application of bite force,” Dental Materials Journal 2018, Vol. 37, Iss. 5, pp. 851–857, 2018.
[42] X. N. Dong , Q. Luo , Xi. Wang, “Progressive post-yield behavior of human cortical bone in shear,” Bone, Vol. 53, Iss. 1, pp. 1-5, Mar. 2013.
[43] T.-V. Do, Q.-C. Hsu, P.-H. Chen, Y.-L. Chen, “Study on the performance of orthodontic self-drilling correction screw of Ti6Al4V and Stainless 316L,” Materials Science Forum, ISSN: 1662-9752, Vol. 872, pp. 276-280, June 2016.
[44] Y.-S. Lin, J.-. Yu, Y.-Z. Chang, C.-L. Lin, , “Biomechanical evaluation of an orthodontic miniimplant used with revolving (translation and rotation) temporary anchorage device by finite element analysis and experimental testing,” Implant Dentistry, Vol. 22, Iss. 1, pp. 77-82, Feb. 2013.
[45] S. E. Barros, G. Janson, K. Chiqueto, D. G. Garib, M. Janson, “Effect of mini-implant diameter on fracture risk and self-drilling efficacy,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 140(4), pp. e181-92, Oct. 2011.
[46] M. Araghbidikashani, A. Golshah, N. Nikkerdar, M, Rezaei, “In-vitro impact of insertion angle on primary stability of miniscrews,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 150, Iss. 3, pp. 436-443, Sept. 2016.
[47] J. H. Yu, Y. S. Lin, W. J. Chang, Y. Z. Chang, C. L. Lin, “Mechanical effects of micro thread orthodontic mini screw design on artificial cortical bone,” Journal of Medical and Biological Engineering, Vol. 34, Iss. 1, pp. 49-55, 2012.
[48] J.-H. Yu, Y.-T. Wang and C.-L. Lin, “Customized surgical template fabrication under biomechanical consideration by integrating CBCT image, CAD system and finite element analysis,” Dental Materials Journal, Vol. 37, Iss. 1, pp. 6-14, 2018.
[49] “Standard specification and test methods for metallic medical bone screws,” F543–17, American National Standards Institute, 2017.
[50] https://zh.wikipedia.org/wiki/%E5%89%9B%E5%BA%A6
[51] https://www.ulbrich.com/alloys/316lvm-stainless-steel-uns-s31673/
[52] C. Dissaux, D. Wagner, D. George, C. Spingarn, Y. Remond, “Mechanical impairment on alveolar bone graft: a literature review,” Journal of Cranio-Maxillo-Facial Surgery, Vol. 47, Iss. 1, pp. 149-157, 2019.
[53] X. Ding, S.-H. Liao, X.-H. Zhu, H.-M. Wang, B.-J. Zou, “Effect of orthotropic material on finite element modeling of completely dentate mandible,” Materials and Design, Vol. 84, pp. 144-153, 2015.