| 研究生: |
吳佳俊 Chia-chun Wu |
|---|---|
| 論文名稱: |
部分平行低密度同為元檢查碼解碼器設計 A Partially Parallel Low-Density Parity Check Code Decode |
| 指導教授: |
魏慶隆
Chin-Long Wey |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 低密度同位元檢查碼解碼設計 、檢查碼 |
| 外文關鍵詞: | Low-Density Parity Check Code Decode, LDPC |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
LDPC解碼演算法是使用訊息傳遞(Message passing);要獲得高效率的解碼情況下,在解碼硬體實現上必須使用大量的記憶體來儲存交換的訊息,而所需的記憶體大小跟同位元矩陣(H matrix)中1的數目有關。換句話說,當同位元矩陣架構越大的話則所需要的記憶體也會增加。
部分平行架構的兩種記憶體使用方法,共享記憶體架構與獨立型記憶體架構已普遍實施於LDPC解碼器。過去的研究提出了一種替代的方法,大大減少了記憶體大小的需求。在本論文中,提出使用移位暫存器用來取代記憶體,並以資料取回電路,進一步提
高吞吐量。結果顯示,本論文LDPC碼解碼器,在碼長為1536和編碼率為1 / 2,頻率為380MHz時吞吐率可達到124 Mbps。
Abstract
LDPC decoding algorithm is a result of the use of Message passing Concept way, obtain efficient decoding circumstances, the realization of the decoder hardware, with plenty of memory to store the messages exchanged, required memory size with the same H matrix contains the number of 1. In other words, When the H Structure, then the greater the need will increase memory.
Two partially parallel architectures have been commonly implemented for LDPC decoders: Share-memory architecture and Individual-memory architecture. Our previous study has presented an alternative approach that significantly reduces the memory size requirement. In this study, shift-registers are employed to replace memory to simplify the data retrieval scheme and to further improve the throughput. Results show that the a LDPC decoder, with a code length of 1536 and a code rate of 1/2, can achieves the data rate up to 166 Mbps at the maximum clock frequency of 460 MHz.
[1] C. Berrou, A. Glavieux, P. Thitimajshima, ” Near Shannon limit error- correcting coding
and decoding: Turbo codes,” IEEE Proc. ICC’93, pp. 1064-1070, May 1993.
[2] R. G. Gallager, “ Low density parity check codes,” IEEE Trans. Information Theory, vol. 8, pp. 21–28, Jan. 1962.
[3] D. J. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” Proceedings of the 5th IMA Conference on Cryptography and Coding, pp. 100–111
[4] Se-Hyeon Kang, In-Cheol Park, ‘‘ Loosely coupled memory-based ecoding architecture
for low density parity check codes,” pp. 1045 – 1056, May 2006
[5] M.Fossorier,et al. “ Reduced complexity iterative decoding of low-densityparity-check
codes based on belief propagation,” IEEE Trans. Comm., pp. 673-680, May 1999.
[6] G. D. Forney, “ Codes on graphs: Normal realizations,” IEEE Trans.onInformation
Theory, vol. 47, no. 2, pp. 520-548, Feb. 2001
[7] F. R. Kschischang, B. J. Frey and H. A. Loeliger, “ Factor graphs and the sum- product algorithm,” IEEE Trans. on Information Theory, vol. 47, no.2, pp. 498- 519, Feb.2001.
[8] Vukobratovic, D. , Senk, V. , “ On the Optimized Patent-Free LDPC Code Design for Content Distribution Systems,” Digital Object Identifier 10.1109/ISWCS.2007, pp. 365 - 369, Oct. 2007
[9] Saeedi, H.; Banihashemi, A. , ” Design of Irregular LDPC Codes for BIAWGN Channels with SNR Mismatch,“ Transactions on Communications, Vol. 57, pp.6-11, Jan. 2009
[10] Li, Z.; Chen, L.; Zeng, L.; Lin, S.; Fong, W. , ” Efficient Encoding of Quasi-Cyclic Low-Density Parity-Check Codes,” Transactions on Communications, Vol. 53, pp.1973 – 1973, Nov. 2005
[11] J. Rosenthal and P.O. Vontobel. ,” Constructions of regular and irregular LDPC codes using Ramanujan graphs and ideas from Margulis,” Allerton Conference on Communication, Control and Computing, pp. 248-257, Oct.2000.
[12] Mansour, M.M. Shanbhag, N.R., “ Low-power VLSI decoder architectures for LDPC codes,” International symposium on Low power electronics and design, pp.84 – 289, 2002
[13] M. Karkooti and J. R. Cavallaro, ” Semi-Parallel Reconfigurable Architectures for Real-Time LDPC Decoding,” Proceedings of the International Conference on Information Technology: Coding and Computing, Vo. 1, pp.579 – 585, 2004
[14] J. Heo. , “ Analysis of Scaling Soft Information on Low Density Parity Check Codes,” Electronics Letters, Vol. 39, pp. 219-221, Jan 2003
[15] Spagnol, C., Marnane, W., Popovici, E.,“ Circuit Theory and Design, 2005. Proceedings of the 2005 European Conference,” Volume: 1, pp. 289-292, vol. 1, Aug 2005
[16] T. Ishikawa, K. Shimizu, T. Ikenaga and S. Goto, ” High-Throughput LDPC Decoder
for Long Code-Length,” International Symposium on VLSI Design, Automation and Test, pp.1-4, Apr. 2006.
[17] Zhongfeng Wang Zhiqiang Cui,“ A Memory Efficient Partially Parallel Decoder Architecture for QC-LDPC Codes,” Very Large Scale Integration (VLSI) Systems, pp.729-733, Nov 2005
[18] Chin-Long Wey, Ming-Der Shieh, Shin-Yo Lin, “ Algorithms of Finding the First Two Minimum Values and Their Hardware Implementation,” IEEE Transactions On Circuits And Systems, Vol. 55, pp. 3430 – 3437, Dec. 2008
[19] C.-K. Liau and C.L. Wey, “ A Partially Parallel Low-Density Parity Check Code Decoder with Reduced Memory for Long Code-Length,” VLSI Design/CAD Symposium, Aug. 2007
[20] A. Blanksby and C. J. Howland, “A 220mW 1-Gbit/s 1024-Bit Rate-1/2 Low Density Parity Check Code Decoder,” in Proc. IEEE CICC, LasVegas, NV, USA, pp. 293-6, May 2001.
[21] A. Blanksby and C. J. Howland, “A 690mW 1-Gbit/s 1024-b Rate-1/2 Low -Density Parity-Check Code Decoder,” IEEE Journal of Solid-State Circuits, vol.37, no. 3, pp. 404-412,March 2002.
[22] Y. Kou, S. Lin and M. P. C. Fossorier, “Low-Density Parity-Check Code Based on
Finite Geometries: A Rediscovery and New Results,” IEEE Trans. Inform. Theory, vol. 47, pp2711-2736,Nov. 2001
[23] J. Zhang and M. P. C. Fossorier, “A Modified Weighted Bit-Flipping Decoding of Low-Density Parity-Check Codes,” IEEE Comm. Lett., vol. 8, pp. 165-167, Mar. 2004.
[24] M. Miladinovic and M. P. C. Fossorier, “Improved bit-flipping decoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 51, pp. 1594-1606, Apr. 2005.
[25] J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-Based decoding algorithms of LDPC codes,” IEEE Comm. Lett., vol. 6, pp. 208-210, Mar. 2002.
[26] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity check codes,” IEEE Comm. Lett., vol. 50, pp. 406-414, March 2002.
[27] G.. Caire, G. Tarico and E. Biglieri, “Bit-Interleaved coded modulation,” IEEE Trans. Inform. Theory., Vol. 44, pp. 927-946, 1998.
[28] R.M.Tanner,“A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, Sept. 1981.