| 研究生: |
蔡佳霖 Chia-lin Tsai |
|---|---|
| 論文名稱: |
以化學浴沉積法製備四元化合物光電極薄膜之研究 The study of quaternary compound photoelectrode thin film by chemical bath deposition |
| 指導教授: |
洪勵吾
Lih-wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 化學浴沉積法 、氫 、四元化合物 、光電極 、光電化學 |
| 外文關鍵詞: | Photoelectrochemical, Photoelectrode, Quaternary compound, Hydrogen, Chemical bath deposition |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用化學浴沉積法於ITO導電玻璃上沉積Ag-In-S-Se四元化合物光電極薄膜,並將之應用於光電化學產氫系統;就製程而言,化學浴沉積法具備便宜、簡單以及可大面積製備的優點,就材料而言,Ag-In-S-Se四元化合物可吸收紫外光與可見光波段的能量,因此極具有發展潛力。本研究將改變前驅物比例、水浴溫度、ph值、鍍層層數、磁石轉速、熱處理溫度以及硒的摻雜比例,用以探討薄膜的晶體結構、表面型態、光學以及光電化學性質。由XRD與EDS分析得知[Ag+]/[In3+] =1/5時可製備出AgIn5S8的結構,接著透過硒元素的摻雜後,使其轉變成AgIn5S8-xSex四元化合物,其直接能隙值由1.79 eV降至約1.75~ 1.786 eV之間,經由Mott-schottky量測得知其皆為n型半導體,其平帶電壓由-0.78 V增加至-0.93 V(vs. Ag/AgCl),而其載子濃度分別為2.58×10^10 cm-3以及2.83×10^12 cm-3,在光電流量測當中,使用0.25M K2SO3和0.35M Na2S當作犧牲試劑,於100 mW/cm2(AM 1.5G)的模擬太陽光照射下,其所量測到之光電流值分別為0.8 mA/cm2以及1.15 mA/cm2。另外於穩定性測試當中,將TiO2光電極薄膜覆蓋於AgIn5S8-xSex光電極薄膜層上,其可有效地減緩光腐蝕的現象,使光電流值減少3.57%的衰退。
Chemical bath deposition (CBD) is applied to deposit Ag-In-S-Se quaternary compound photoelectrode thin film on indium tin oxide coated glass (ITO), which can then be used as the photoelectrode in photoelectrochemical production of hydrogen. The advantages of chemical bath deposition are simple, inexpensive and large area deposition. Besides, Ag-In-S-Se quaternary compound can absorb ultraviolet and visible light so that it has potential to develope. In our experiment, we investigate the crystal structure, morphology, optic property, and PEC performance as precursor ratio, bath temperature, ph value, number of thin film, stirring rate, thermal treatment temperature and atomic percentage of selenium are changed. The results of XRD and EDS show that AgIn5S8 is obtained when [Ag+]/[In3+] =1/5 and transformed to AgIn5S8-xSex quaternary compound by doping selenium with the direct band gap decreasing from 1.79 eV to the range of 1.75~1.786 eV. Both are identified as n-type semiconductor according to Mott-Schottky measurement with decreasing flat band potential from -0.78 V to -0.93 V(vs. Ag/AgCl) and increasing carrier density from 2.58×10^10 cm-3 to 2.83×10^12 cm-3. In PEC measurement, we use 0.25M K2SO3 and 0.35M Na2S as sacrificial reagent and 100 mW/cm2(AM 1.5G) simulation sunlight as light source. The photocurrent density of AgIn5S8 and AgIn5S7.992Se0.008 is 0.8 mA/cm2 and 1.15 mA/cm2 with an external voltage of 0V(vs. Ag/AgCl) respectively. Moreover, the result of stability test shows that photocorrosion phenomenon is inhibited by covering TiO2 on AgIn5S8-xSex photoelectrode thin film, and reduces 3.57% decay of photocurrent density.
[1] 台灣電力公司,http://www.taipower.com.tw/。
[2] 聯合國政府間氣候變遷問題小組(IPCC),http://www.ipcc.ch/。
[3] 曲新生,陳發林,氫能技術:二十一世紀是氫能世紀,五南,臺北市,(2006)。
[4] A. Kudo, “Development of photocatalyst materials for water splitting
”, International Journal of Hydrogen Energy, Vol. 31, pp.197-202 (2006).
[5] 國際能源總署(IEA),http://www.iea.org/。
[6] 呂宗昕,圖解奈米科技與光觸媒,商周出版,臺北市,(2003)。
[7] ENB Korea,http://enbkorea88.en.ec21.com/What_is_Photocatalyst --712104_712221.html。
[8] S.O. Kasap, Optoelectronics and photonics: principles and practices, Prentice Hall, pp.255-273, (2001).
[9] T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell, “Photoelectrochemi- cal hydrogen generation from water using solar energy. Materials- related aspects”, International Journal of Hydrogen Energy, Vol. 27, pp.991-1022, (2002).
[10] V. Rakovics , Zs. J. Horváth, Zs. E. Horváth, I. Bársony, C. Frigeri ,
and T. Besagni, “Investigation of CdS/InP heterojunction prepared
bychemical bath deposition”, Physica Status Solidi C, Vol. 4, pp. 1490-1493, (2007).
[11] B. Pejova, M. Najdoski, I. Grozdanov, and S. K. Dey, ” Chemical
bath deposition of nanocrystalline (111) textured Ag2Se thin films”,
Materials Letters, Vol. 43, pp.269-273, (2000).
[12] D. Hariskos, M. Powalla, N. Chevaldonnet, D. Lincot, A. Schindler
, and B. Dimmler, “Chemical bath deposition of CdS buffer layer:
prospects of increasing materials yield and reducing waste”, Thin
Solid Films, Vol. 387, pp.179-181, (2001).
[13] U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Chemical and
structural modifications of laser treated iron surfaces: investigation
of laser processing parameters”, Applied Surface Science, Vol. 230
, pp.364-370, (2004).
[14] S. Biswas, M. F. Hossain, T. Takahashi, Y. Kubota, and A.
Fujishima, “Photocatalytic activity of high-vacuum annealed
CdS-TiO2 thin film”, Thin Solid Films, Vol. 516, pp.7313-7317
, (2008).
[15] T. Ishiyama, T. Arai, Y. Sato, K. Shinoda, B. Jeyadevan, and K.
Tohji,“Photocatalytic efficiency of CdS film synthesized by CBD
method”, American Institute of Physics Conference Proceedings,
Vol. 833, pp.23-26, (2006).
[16] H. Liu, and L. Gao, “Synthesis and properties of CdSe-sensitized
rutile TiO2 nanocrystals as a visible light-responsive photocatalyst”,
Journal of the American Ceramic Society, Vol. 88, pp.1020-1022,
(2005).
[17] D. Chen and J. Ye, “Photocatalytic H2 evolution under visible light
irradiation on AgIn5S8 photocatalyst”, Journal of Physics and
Chemistry of Solids, Vol. 68, pp.2317-2320, (2007).
[18] I.V. Bodnar and V. F. Gremenok, “Structure and optical properties of AgIn5S8 films prepared by pulsed laser deposition”, Thin Solid Films, Vol. 487, pp.31-34, (2005).
[19] L. H. Lin, C. C. Wu, and T. C. Lee, “Growth of crystalline AgIn5S8 thin films on glass substrates from aqueous solutions”, Crystal Growth & Design, Vol. 7, pp.2725-2732, (2007).
[20] W. S. Chang, C. C. Wu, M. S. Jeng, K. W. Cheng, C. M. Huang, and T. C. Lee, “Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications”, Materials Chemistry and Physics, Vol. 120, pp.307-312, (2010).
[21] A. F. Qasrawi, “Annealing effects on the structure and optical properties of AgIn5S8 thin films”, Journal of Alloys and Compounds, Vol. 455, pp.295-297, (2008).
[22] K. K. Banger, M. H. C. Jin, J. D. Harris, P. E. Fanwick, and A. F. Hepp, “A new facile route for preparation of single-source precursors for bulk, thin film, and nanocrystallite I-III-VI semiconductors”, Inorganic Chemistry, Vol. 42, pp.7713-7715, (2003).
[23] G. Delgado, A. J. Mora, C. Pineda, and T. Tinoco, “Simultaneous rietveld refinement of three phases in the Ag-In-S semiconductor system from x-ray powder diffraction”, Materials Research Bulletin, Vol. 36, pp.2507-2517, (2001).
[24] M.A. Fox and M.T. Dulay, “Hetergeneous Photocatalysis” Chemistry Reviews, Vol. 93, pp.341-357, (1993).
[25] R. S. Mane, and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films”, Materials Chemistry and Physics,
Vol. 65, pp.1-31, (2000).
[26] P.K. Nair, M.T.S. Nair, V.M. Garcoa, O.L. Arenas, Y. Pena, A.
Castillo, I.T. Ayala, O. Gomezdaza, A. Sanchez, J. Campos, H. Hu, R. Suarez, and M.E. Rincon, “Semiconductor thin films by chemical bath deposition for solar energy related applications”, Solar Energy Materials and Solar Cells, Vol. 52, pp.313-344, (1998).
[27] A. Fujishima, and K. Honda, ”Electrochemical photolysis of water at
a semiconductor electrode”, Nature, Vol. 238, pp.37-38, (1972).
[28] A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials for
water splitting”, Chemical Society Reviews, Vol. 38, pp.253-278,
(2009).
[29] A. Kudo, “Recent progress in the development of visible light-driven
powdered photocatalysts forwater splitting”, International Journal of
Hydrogen Energy, Vol. 32, pp.2673–2678, (2007).
[30] H. Kato, and A. Kudo, “Visible-light-response and photocatalytic
activities of TiO2 and SrTiO3 photocatalysts codoped with antimony
and chromium”, Journal of Physical Chemistry B, Vol. 106,
pp.5029, (2002).
[31] R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or
niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light
response for H2 or O2 evolution from aqueous solutions”, Physical
Chemistry Chemical Physics, Vol. 7, pp.2241-2245, (2005).
[32] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons,
New York, pp.790-838, (1981).
[33] A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H. W. Schock, “CIGS J–V distortion in the absence of blue photons”, Thin Solid Films, Vol. 480-481, pp.273-278, (2005).
[34] A. Aquilera, M. L. Aquilar Hernandez, J. Orteqa-Lopez, M.,
Sanchez, V. M., Gonzalez, and M. A. Trujillo, “Some physical properties of chalcopyrite and orthorhombic AgInS2 thin films
prepared by spray pyrolysis”, Materials Science and Engineering: B,
Vol. 102, pp.380-384, (2003).
[35] A. F. Qasrawi, T. S. Kayed, and I. Ercan, “Fabrication and some
physical properties of AgIn5S8 thin films”, Materials Science and
Engineering, Vol.113, pp.73-78, (2004).
[36] J. Q. Hu, B. Deng, K. B. Tang, C. R. Wang, and Y. T. Qian,
“Preparation and phase control of nanocrystalline silver indium
sulfides via a hydrothermal route”, Journal of materials research,
Vol. 16, pp.3411-3415, (2001).
[37] T. C. Deivaraj, J. H. Pard, M. Afzaal, P. O’Brien, and J. Vittal, “ Single-source precursors to ternary silver indium sulfide materials”, Chemical Communications, Vol. 22, pp.2304-2305, (2001).
[38] D. Yang, S. Xu, Q. Chen, and W. Wang, “A simple organic synthesis for CdS and Se-doped CdS nanocrystals”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 299, pp.153–159, (2007).
[39] Y. Ueno, Y. Hattori, M. Ito, T. Sugiura, and H. Minoura, “Synthesis
and photoelectrochemical characterization of (Ag2S)x(In2S3)1-x and
AgInS2-ySey”, Solar Energy Materials and Solar Cells, Vol. 26,
pp.229-242, (1992).
[40] H. Shinguu, M.M.H. Bhuiyan, T. Ikegami, and K. Ebihara,
“Preparation of TiO2/WO3 multilayer thin film by PLD method
and its catalytic response to visible light”, Thin Solid Films, Vol.
506–507, pp.111 – 114, (2006).
[41] B. Liua, L. Wena, and X. Zhaoa, “Efficient degradation of aqueous
methyl orange over TiO2 and CdS electrodes using photoelectron-
catalysis under UV and visible light irradiation”, Progress in
Organic Coatings, Vol. 64, pp.120–123, (2009).
[42] K. W. Cheng, C. M. Huang, G. T. Pan, J. C. Huang, T. C. Lee, and
T. C. K. Yang, “The photoelectrochemical performances of Sb-doped AgIn5S8 film electrodes prepared by chemical bath deposition”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 202, pp.107–114, (2009).
[43] D. S. Dhawalea, D. P. Dubal, R. R. Salunkhea, T. P. Gujara, M. C. Rathb, and C. D. Lokhande, “Effect of electron irradiation on properties of chemically deposited TiO2 nanorods”, Journal of Alloys and Compounds, Vol. 499, pp.63–67, (2010).
[44] P. O’Brien and J. McAleese, “Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS”, Journal of Material Chemistry, Vol. 8, pp.2309–2314, (1998).
[45] H. Y. Xu, H. Wang, T. N. Jin, and H. Yan, “Rapid fabrication of luminescent Eu:YVO4 films by microwave-assisted chemical
solution deposition”, Nanotechnology, Vol. 16, pp.65-69, (2005).
[46] B. D. Cullity, and S. R. Stock, Elements of X-ray diffraction (Inter-
national edition), Prentice-Hall, New Jersey, (2001).
[47] S. Kumari, C. Tripathi, A. P. Singh, D. Chauhan, R. Shrivastav, S. Dass, and V. R. Satsangi, “Characterization of Zn-doped hematite
thin films for photoelectrochemical splitting of water”, Current Science, Vol. 91, pp.1062-1064, (2006).
[48] 郭俊麟,利用CBD法製備銅摻雜之硫系列光觸媒材料研究,碩士論文,國立中央大學機械工程研究所,桃園縣中壢市,(2008)。
[49] 鄭 亨,以化學水浴法製備AgInS2可見光光電極及其摻雜銅之硏究,碩士論文,國立中央大學能源工程硏究所,桃園縣中壢市,(2009)。
[50] C.D. Lokhande, A. Ennaoui, P.S. Patil, M. Giersig, K. Diesner, M. Muller, and H. Tributsch, “Chemical bath deposition of indium sulphide thin films: preparation and characterization”, Thin Solid Films, Vol. 340, pp.18-23, (1999).
[51] R. Sahraei, G. M. Aval, A. Baghizadeh, M. Lamehi-Rachti, A. Goudarzi, and M. H. Majles Ara, “Investigation of the effect of temperature on growth mechanism of nanocrystalline ZnS thin films”, Materials Letters, Vol. 62, pp.4345–4347, (2008).
[52] J. I. Pankove, Optical Process in Semiconductor, Prentice Hall, New York, (1971).
[53] G. Delgado, A. J. Mora, C. Pineda, and T. Tinoco, “Simulation Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction”, Material Research Bulletin, Vol. 36, pp.2507-2517, (2001).
[54] B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, and C. Maffiotte, “Quartz crystal microbalance study of the growth of indium(III) sulphide films from a chemical solution”, Electrochimica Acta, Vol. 49, pp.737-744 , (2004).
[55] R. Zhai, S. B. Wang, H. Y. Xu, H. Wang, and H. Yan, “Rapid formation of CdS, ZnS thin films by microwave-assisted
chemical bath deposition”, Materials Letters, Vol. 59, pp.1497-
1501, (2005).
[56] T. B. Nasr, N. Kamoun, M. Kanzari, and R. Bennaceur, “Effect of pH on the properties of ZnS thin films grown by chemical bath deposition”, Thin Solid Films, Vol. 500, pp.4-8, (2006).
[57] 黃惠良,曾百亨,蕭錫鍊,周明奇,林堅楊,江雨龍,李威儀,
李世昌,林唯芳,太陽電池,五南,台北市,(2008)。
[58] 施敏,黃調元,半導體元件物理與製作技術,交通大學出版社
,新竹市,(2006)。
[59] 吳怡萱,再生能源概論,五南,台北市,(2008)。
[60] 巫玉娟,活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之
可行性研究,碩士論文,國立中山大學環境工程研究所,高雄
市,(2004)。