跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭耀睿
Pavol Polacek
論文名稱: Opportunistic Scheduling for Multicast over Wireless Networks
指導教授: 黃志煒
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 164
中文關鍵詞: 感知網路多媒體廣播
外文關鍵詞: CHANNEL AWARE SCHEDULING, Opportunistic scheduling
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過無線傳輸方式的資料量在近十年大幅增長,並且預期在下個世代
    對於無線傳輸的需求將是有增無減。為了應對這樣大量增長的需求,提高
    無線傳輸的效率和傳輸能力是必然的趨勢近期,Opportunistic Scheduling
    (OS)的概念在許多的通訊相關的研究領域被大量探討。OS是在考慮通
    道品質的情況下,以機遇式方式對無線通道進行排程來改善無線傳輸時
    的效率,排程器會挑選接收訊號品質相對較好的使用者優先傳輸,如此
    一來系統的平均吞吐量將會改善許多。論文的主題除了將OS實現在群播
    中,同時能應用於Cognitive Radio (CR)與Multimedia Broadcast multicast
    service Single Frequency Network (MBSFN)的環境下。探討並克服在上述
    兩個情境底下,Opportunistic Multicasting (OM) 排程如何設計才能提升
    整體吞吐量。首先,我們探討了Multiuser Diversity (MUD)的理論分析,
    並提出統一內部及外部MUD的概念,此概念可以讓我們對系統整體吞吐量
    和使用者吞吐量進行公式化,進而在設計CR的演算法時能夠量化吞吐量。
    第二,我們針對不同Modulation and Coding Scheme (MCS)的調整間隔,
    探討了Signal-to-interference-plus-noise Ratio (SINR)在MBSFN的分布情
    形和OM的頻譜效率。運用此結果,我們設計出一低回饋、低複雜度和慢
    速調整調變編碼的演算法應用在MBSFN。
    綜合以上兩點,我們所設計的演算法,非常適用於CR和在MBSFN的
    環境下。大量的模擬結果也顯示我們所提出的演算法比起此前的設計能提
    供較佳的服務品質給用戶。


    The demand for wireless data is continuously rising and is expected to
    increase. To cope with this growth, it is necessary to work towards higher
    network capacity and improved network capabilities.
    In the recent period, opportunistic concepts started to take hold and
    being part of research into communication technologies. Opportunistic
    Scheduling (OS) is a scheduling approach for wireless channels, where channel
    quality is considered, when making scheduling decisions. The scheduler
    transmits to users with relatively better signal quality, so the average
    amount of transmitted data can be increased. The focus of this thesis
    will be on OS as a method for increasing the transmission eciency and
    its implementation in wireless networks. The main research topic of the
    dissertation is thus multicasting with OS, i.e. Opportunistic Multicasting
    (OM), and its adaptation to Cognitive Radio (CR) and Multimedia Broadcast
    multicast service Single Frequency Network (MBSFN) networks. More
    speci cally, how it ts into the these types of networks and what kind of
    obstacles need to be tackled, before OM can be successfully deployed.
    First we study the theory of Multiuser Diversity (MUD) and provide
    a novel concept unifying internal and external MUD, enabling us to formulate
    the system sum and user throughput. The resulting CR algorithm
    design approaches the derived throughput advantage. Second, we look
    at Signal-to-interference-plus-noise Ratio (SINR) distribution in MBSFN
    networks and Spectrum Eciency (SE) of OM under extended Modulation
    and Coding Scheme (MCS) adaptation interval. Using the results, we design
    a low feedback, low complexity, and slow MCS change based algorithm
    suited for MBSFN.
    The resulting algorithm designs are well suited to the studied CR
    and MBSFN networks. Extensive simulations show, that the presented
    algorithm designs perform better than previous designs, enabling better
    quality service to users.

    摘要i Abstract ii Acknowledgements iv Contents vi List of Figures ix List of Tables xiii Acronyms xvi List of Selected Mathematical Notation xxi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Wireless Communications: New Opportunities . . . . . . . . 7 1.4 Objectives and Scope of the Thesis . . . . . . . . . . . . . . 9 1.5 Author's Contributions . . . . . . . . . . . . . . . . . . . . . 11 2 Wireless Channel and Opportunistic Concepts 13 2.1 Wireless Channel . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Variability of the Wireless Channel . . . . . . . . . . 16 2.2 Mobile Devices . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Theory of Opportunistic Multicasting 21 3.1 Multiuser Diversity . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Unified Opportunistic Scheduling . . . . . . . . . . . . . . . 23 3.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 System Sum Throughput under Unified Opportunistic Scheduling . . . . . . . . . . . . . . . . . . . . . . 24 3.2.3 Effective User Throughput under Unified Opportunistic Scheduling . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Opportunistic Scheduling with Extended Adaptation Interval 27 3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 Opportunistic Multicasting Under Extended MCS Adaptation Intervals . . . . . . . . . . . . . . . . . . 32 3.3.3 Spectral Efficiency Optimization under Extended Adaptation Intervals . . . . . . . . . . . . . . . . . . . . . 34 3.3.4 Multi-Stream Transmission . . . . . . . . . . . . . . . 35 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Opportunistic Multicasting in CR Networks 39 4.1 Opportunistic spectrum access . . . . . . . . . . . . . . . . . 40 4.1.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Opportunistic Scheduling . . . . . . . . . . . . . . . . . . . . 48 4.2.1 iMUD Implementation . . . . . . . . . . . . . . . . . 48 4.2.2 eMUD Implementation . . . . . . . . . . . . . . . . . 49 4.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 Resource Efficient Fragmentation . . . . . . . . . . . . . . . 56 4.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4 Tile Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5 Forward Error Correction . . . . . . . . . . . . . . . . . . . 69 4.5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6 Scalable Video Coding . . . . . . . . . . . . . . . . . . . . . 77 4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Unified Opportunistic Scheduling Algorithm 85 5.1 The System Model . . . . . . . . . . . . . . . . . . . . . . . 86 5.2 Unified Opportunistic Scheduling Problem . . . . . . . . . . 87 5.3 Unified Opportunistic Scheduling Algorithm . . . . . . . . . 89 5.3.1 Unified Opportunistic Scheduling Algorithm . . . . . 90 5.3.2 Opportunistic Multicasting over CR . . . . . . . . . . 91 5.3.3 Scheduling Priority Adjustment . . . . . . . . . . . . 93 5.3.4 Resource Consumption Monitoring . . . . . . . . . . 94 5.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4.1 Performance with Different Levels of External MUD . 96 5.4.2 UOS Performance . . . . . . . . . . . . . . . . . . . . 97 5.4.3 Performance Under Low Resource Availability . . . 102 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6 Statistical Feedback based Opportunistic Scheduling Algorithm 109 6.1 Statistical Feedback Based Opportunistic Multicast Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.2.1 MCS Selection . . . . . . . . . . . . . . . . . . . . . 114 6.3 Adaptation Interval Length . . . . . . . . . . . . . . . . . . 115 6.3.1 Single Video Performance . . . . . . . . . . . . . . . 116 6.3.2 Multiple Video Transmission . . . . . . . . . . . . . . 118 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7 Conclusion 121

    [1] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris,
    V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, \5G on the Horizon: Key
    Challenges for the Radio-Access Network," IEEE Vehicular Technol-
    ogy Magazine, vol. 8, pp. 47{53, Sept. 2013.
    [2] Ericsson, \Ericsson Mobility Report," Tech. Rep. June, 2015.
    [3] O. Oyman, J. Foerster, Y.-J. Tcha, and S.-C. Lee, \Toward enhanced
    mobile video services over WiMAX and LTE," IEEE Communications
    Magazine, vol. 48, pp. 68{76, Aug 2010.
    [4] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for
    Mobile Broadband. Elsevier Science, 2011.
    [5] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
    Soong, and J. C. Zhang, \What will 5G be?," IEEE Journal on Se-
    lected Areas in Communications, vol. 32, no. 6, pp. 1065{1082, 2014.
    [6] G.Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. T.
    Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau,
    D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann,
    \5GNOW: Non-orthogonal, asynchronous waveforms for future
    mobile applications," IEEE Communications Magazine, vol. 52, no. 2,
    pp. 97{105, 2014.
    [7] B. Sadler and Q. Zhao, \A Survey of Dynamic Spectrum Access,"
    IEEE Signal Processing Magazine, vol. 24, pp. 79{89, May 2007.
    [8] D. Lecompte and F. Gabin, \Evolved multimedia broadcast/multicast
    service (eMBMS) in LTE-advanced: overview and Rel-11 enhancements,"
    IEEE Communications Magazine, vol. 50, pp. 68{74, Nov
    2012.
    [9] W.-H. Kuo and W. Liao, \Utility-based radio resource allocation for
    QoS traffic in wireless networks," IEEE Transactions on Wireless
    Communications, vol. 7, pp. 2714{2722, July 2008.
    [10] S. Deb, S. Jaiswal, and K. Nagaraj, \Real-Time Video Multicast in
    WiMAX Networks," INFOCOM 2008. The 27th Conference on Com-
    puter Communications. IEEE, pp. 1579{1587, apr 2008.
    [11] C. Yin, L. Gao, S. Member, and S. Cui, \Scaling Laws for Overlaid
    Wireless Networks : A Cognitive Radio Network versus a Primary
    Network," IEEE/ACM Transactions on Networking (TON), vol. 18,
    no. 4, pp. 1317{1329, 2010.
    [12] D. Hu, S. Mao, Y. Hou, and J. Reed, \Scalable video multicast in
    cognitive radio networks," Selected Areas in Communications, IEEE
    Journal on, vol. 28, no. 3, pp. 334{344, 2010.
    [13] C. Gao, Y. Shi, and Y. Hou, \Multicast communications in multi-hop
    cognitive radio networks," IEEE JOURNAL ON SELECTED AREAS
    IN COMMUNICATIONS, vol. 29, no. 4, pp. 784{793, 2011.
    [14] W. Kim and M. Gerla, \Cognitive multicast with partially overlapped
    channels in vehicular ad hoc networks," Ad Hoc Networks, pp. 1{10,
    Feb. 2012.
    [15] A. Asareh and T. Fujii, \A novel reliable broadcasting scheme under
    cognitive radio environment based on erasure correctable codes," 2012
    International Conference on Computing, Networking and Communi-
    cations (ICNC), pp. 257{261, Jan. 2012.
    [16] J. Jin and B. Li, \Adaptive Random Network Coding in WiMAX," in
    2008 IEEE International Conference on Communications, pp. 2576{
    2580, IEEE, 2008.
    [17] H. Kushwaha, Y. Xing, R. Chandramouli, and H. Heffes, \Reliable
    Multimedia Transmission Over Cognitive Radio Networks Using Fountain
    Codes," Proceedings of the IEEE, vol. 96, pp. 155{165, Jan. 2008.
    [18] P. Polacek and C.-W. Huang, \Rateless code based opportunistic multicasting
    over cognitive radio networks," in Global Communications
    Conference (GLOBECOM), 2012 IEEE, pp. 1090{1096, IEEE, 2012.
    [19] X. Qin and R. Berry, \Exploiting multiuser diversity for medium access
    control in wireless networks," in IEEE INFOCOM, vol. 2, pp. 1084{
    1094, IEEE, 2003.
    [20] U. C. Kozat, \On the Throughput Capacity of Opportunistic Multicasting
    with Erasure Codes," INFOCOM 2008. The 27th Conference
    on Computer Communications. IEEE, pp. 520{528, Apr 2008.
    [21] W. Huang and K. L. Yeung, \On maximizing the throughput of opportunistic
    multicast in wireless cellular networks with erasure codes,"
    in Communications (ICC), 2011 IEEE International Conference on,
    pp. 1{5, IEEE, 2011.
    [22] C.-W. Huang, S.-M. Huang, P.-H. Wu, S.-J. Lin, and J.-N. Hwang,
    \OLM: Opportunistic Layered Multicasting for Scalable IPTV over
    Mobile WiMAX," IEEE Transactions on Mobile Computing, vol. 11,
    pp. 453{463, Mar 2012.
    [23] P. Viswanath, D. Tse, and R. Laroia, \Opportunistic Beamforming
    Using Dumb Antennas," IEEE Transactions on Information Theory,
    vol. 48, no. 6, pp. 1277{1294, 2002.
    [24] L. Rong, O. B. Haddada, and S.-E. Elayoubi, \Analytical Analysis of
    the Coverage of a MBSFN OFDMA Network," IEEE Global Telecom-
    munications Conference, pp. 1{5, 2008.
    [25] A. Alexiou, C. Bouras, V. Kokkinos, A. Papazois, and G. Tsichritzis,
    \Modulation and coding scheme selection in multimedia broadcast
    over a single frequency network-enabled long-term evolution networks,"
    International Journal of Communication Systems, vol. 25,
    pp. 1603{1619, Dec 2012.
    [26] M. Luby, T. Gasiba, T. Stockhammer, and M. Watson, \Reliable Multimedia
    Download Delivery in Cellular Broadcast Networks," IEEE
    Transactions on Broadcasting, vol. 53, pp. 235{246, Mar 2007.
    [27] C. Bouras, N. Kanakis, V. Kokkinos, and A. Papazois, \Application
    layer forward error correction for multicast streaming over LTE networks,"
    International Journal of Communication Systems, vol. 26,
    pp. 1459{1474, Nov 2013.
    [28] M. Condoluci, G. Araniti, A. Molinaro, and A. Iera, \Multicast resource
    allocation enhanced by channel state feedbacks for multiple
    scalable video coding streams in lte networks," IEEE Transactions on
    Vehicular Technology, vol. 65, pp. 2907{2921, May 2016.
    [29] Y. Cai, S. Lu, L. Zhang, C. Wang, P. Skov, Z. He, and K. Niu, \Reduced
    Feedback Schemes for LTE MBMS," VTC Spring 2009 - IEEE
    69th Vehicular Technology Conference, pp. 1{5, Apr 2009.
    [30] S. Huang, J. Hwang, and Y. Chen, \Reducing Feedback Load of Opportunistic
    Multicast Scheduling over Wireless Systems," IEEE Com-
    munications Letters, vol. 14, pp. 1179{1181, Dec 2010.
    [31] M. Li, X. Wang, D. Wang, and J. Zhou, \Feedback load reduction
    scheme in OFDM-based wireless multicast systems," in Wireless
    Communications and Networking Conference (WCNC), 2013 IEEE ,
    pp. 1068{1072, IEEE, Apr 2013.
    [32] J. G. Andrews, \Seven ways that hetnets are a cellular paradigm shift,"
    IEEE Communications Magazine, vol. 51, pp. 136{144, March 2013.
    [33] D. Ma and M. Ma, \Network selection and resource allocation for
    multicast in hetnets," Journal of Network and Computer Applications,
    vol. 43, pp. 17{26, 2014.
    [34] P. Polacek, T.-Y. Yang, and C.-W. Huang, \Joint opportunistic spectrum
    access and scheduling for layered multicasting over cognitive radio
    networks," in Multimedia Signal Processing (MMSP), 2011 IEEE
    13th International Workshop on, pp. 1{6, IEEE, 2011.
    [35] P. Polacek and C.-W. Huang, \QoS Scheduling with Opportunistic
    Spectrum Access for Multimedia," Cognitive Radio and Interfer-
    ence Management: Technology and Strategy: Technology and Strategy,
    p. 162, 2012.
    [36] P. Polacek, C.-W. Huang, and J.-W. Chiang, \Unified Opportunistic
    Scheduling for Layered Multicast Over Cognitive Radio Networks,"
    IEEE Transactions on Mobile Computing, vol. PP, no. 99, pp. 1{1,
    2015.
    [37] P. Polacek, T.-Y. Yang, and C.-W. Huang, \Opportunistic Multicasting
    for Single Frequency Networks," Wireless Communications and
    Mobile Computing, 2016.
    [38] R. Jain, \Channel Models A Tutorial1," 2007.
    [39] C. E. Shannon, \Communication in the presence of noise," Proceedings
    of the IRE, vol. 37, pp. 10{21, Jan 1949.
    [40] A. Asadi and V. Mancuso, \A survey on opportunistic scheduling in
    wireless communications," IEEE Communications Surveys & Tutori-
    als, vol. 15, no. 4, pp. 1671{1688, 2013.
    [41] R. Knopp and P. Humblet, \Multiple-accessing over frequencyselective
    fading channels," Personal, Indoor and Mobile Radio Com-
    munications, 1995. PIMRC'95. 'Wireless: Merging onto the Informa-
    tion Superhighway'., Sixth IEEE International Symposium on, 1995.
    [42] M. Zekri, B. Jouaber, and D. Zeghlache, \A review on mobility management
    and vertical handover solutions over heterogeneous wireless
    networks," Computer Communications, vol. 35, no. 17, pp. 2055{2068,
    2012.
    [43] J. Wang, M. Ghosh, and K. Challapali, \Emerging cognitive radio
    applications: A survey," IEEE Communications Magazine, vol. 49,
    pp. 74{81, March 2011.
    [44] G. Yeap, \Smart mobile SoCs driving the semiconductor industry:
    Technology trend, challenges and opportunities," in Electron Devices
    Meeting (IEDM), 2013 IEEE International, pp. 1{3, IEEE, 2013.
    [45] E. Hossain and M. Hasan, \5G cellular: key enabling technologies and
    research challenges," IEEE Instrumentation & Measurement Maga-
    zine, vol. 18, no. 3, pp. 11{21, 2015.
    [46] J. Mitola, \Cognitive radio for
    flexible mobile multimedia communications,"
    1999 IEEE International Workshop on Mobile Multimedia
    Communications (MoMuC'99) (Cat. No.99EX384), vol. 22102, pp. 3{
    10, 1999.
    [47] F. C. Commission et al., \Facilitating opportunities for
    flexible, efficient, and reliable spectrum use employing cognitive radio technologies,"
    Et docket, no. 03-108, pp. 05{57, 2003.
    [48] G. Song and Y. Li, \Asymptotic throughput analysis for channel-aware
    scheduling," Communications, IEEE Transactions on, vol. 54, no. 10,
    pp. 1827{1834, 2006.
    [49] A. DasGupta, Springer Texts In Statistics: Probability for Statistics
    and Machine Learning: Fundamentals and Advanced Topics. Springer
    New York, 2011.
    [50] E. Damosso and L. M. Correia, COST Action 231: Digital Mobile
    Radio Towards Future Generation Systems: Final Report. European
    Commission, 1999.
    [51] L. Rong, S. E. Elayoubi, and O. B. Haddada, \Performance Evaluation
    of Cellular Networks Offering TV Services," IEEE Transactions on
    Vehicular Technology, vol. 60, pp. 644{655, Feb 2011.
    [52] Q. Zhao, S. Geirhofer, L. Tong, and B. M. Sadler, \Opportunistic
    Spectrum Access via Periodic Channel Sensing," IEEE Transactions
    on Signal Processing, vol. 56, pp. 785{796, Feb. 2008.
    [53] S. Geirhofer, L. Tong, and B. Sadler, \Cognitive Medium Access: Constraining
    Interference Based on Experimental Models," IEEE Journal
    on Selected Areas in Communications, vol. 26, pp. 95{105, Jan. 2008.
    [54] Y. Chen, Q. Zhao, and A. Swami, \Joint Design and Separation Principle
    for Opportunistic Spectrum Access in the Presence of Sensing
    Errors," IEEE Transactions on Information Theory, vol. 54, pp. 2053{
    2071, May 2008.
    [55] J. Nonnenmacher and E. W. Biersack, \Optimal multicast feedback,"
    in INFOCOM'98. Seventeenth Annual Joint Conference of the IEEE
    Computer and Communications Societies. Proceedings. IEEE, vol. 3,
    pp. 964{971, IEEE, 1998.
    [56] I. Recommendation, \Guidelines for the evaluation of radio transmission
    technologies for IMT-2000," International Telecommunication
    Union, 1997.
    [57] T. Stockhammer and M. M. Hannuksela, \H. 264/AVC video for wireless
    transmission," IEEE Wireless Communications, vol. 12, no. 4,
    pp. 6{13, 2005.
    [58] X. Wu, S. Cheng, and Z. Xiong, \On packetization of embedded multimedia
    bitstreams," Multimedia, IEEE Transactions on, vol. 3, no. 1,
    pp. 132{140, 2001.
    [59] IETF, \RFC6330: RaptorQ Forward Error Correction Scheme for Object
    Delivery," 2011.
    [60] D. Vukobratovic, V. Stankovic, D. Sejdinovic, L. Stankovic, and
    Z. Xiong, \Scalable video multicast using expanding window fountain
    codes," IEEE Transactions on Multimedia, vol. 11, no. 6, pp. 1094{
    1104, 2009.
    [61] H. Schwarz, D. Marpe, and T. Wiegand, \Overview of the Scalable
    Video Coding Extension of the H.264/AVC Standard," IEEE Transac-
    tions on Circuits and Systems for Video Technology, vol. 17, pp. 1103{
    1120, Sept 2007.
    [62] M. Chen, \AMVSC: a framework of adaptive mobile video streaming
    in the cloud," in Global Communications Conference (GLOBECOM),
    2012 IEEE, pp. 2042{2047, IEEE, 2012.
    [63] M. Van Der Schaar, S. Krishnamachari, S. Choi, and X. Xu, \Adaptive
    cross-layer protection strategies for robust scalable video transmission
    over 802.11 WLANs," IEEE Journal on Selected Areas in Communi-
    cations, vol. 21, pp. 1752{1763, Dec. 2003.
    [64] Y. Merzifonluoglu, J. Geunes, and H. E. Romeijn, \The static stochastic
    knapsack problem with normally distributed item sizes," Mathe-
    matical Programming, vol. 134, pp. 459{489, Mar. 2011.
    [65] B. C. Dean, M. X. Goemans, and J. Vondrak, \Approximating the
    Stochastic Knapsack Problem: The Benefit of Adaptivity," Mathe-
    matics of Operations Research, vol. 33, no. 4, pp. 945{964, 2008.
    [66] \Mobile wimax part i: A technical overview and performance evaluation,"
    tech. rep., 2006.
    [67] 3GPP, \LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
    Physical layer procedures (3GPP TS 36.213 version 12.5.0 Release
    12)," technical specification, 2015.
    [68] M. T. Kawser, N. Imtiaz, B. Hamid, N. Hasan, and M. S. Alam,
    \Downlink SNR to CQI Mapping for Different Multiple Antenna Techniques
    in LTE," International Journal of Information and Electronics
    Engineering, vol. 2, no. 5, pp. 757{760, 2012.

    QR CODE
    :::