| 研究生: |
朱琮瑋 Tsung-Wei Chu |
|---|---|
| 論文名稱: |
懸臂式擋土牆最佳化設計之研究 Optimum Design of Cantilever Retaining Wall |
| 指導教授: |
黃俊鴻
Jin-Hung Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 遺傳演算法 、最佳化設計 、牆頂水平變位 、懸臂式擋土牆 |
| 外文關鍵詞: | cantilever retaining wall, optimum design, algorithm, lateral displacement of retaining wall |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對懸臂式擋土牆進行最佳化設計之研究,最佳化的數學模型共選取八個設計變數,包括牆身頂部寬度、牆身底部寬度、基礎版總寬度、基礎趾版寬度以及基礎版厚度五個獨立設計變數,而止滑榫寬度、厚度及位置為三個非獨立設計變數。除了依據現行的設計規範建立束制條件外,再以彈性力學之觀念推導計算牆頂的水平變位,並將其納入為束制條件之一。以工程造價為目標函數進行最低價可行解之搜尋,以實數編碼遺傳演算法(RGA)進行最佳解之搜尋,並以竭盡搜尋法(ESM)所得全域最佳解來檢驗遺傳演算法之搜尋性能。綜合以上的概念,以商用軟體Visual Basic 2005撰寫懸臂式擋土牆自動化設計程式,當最佳化分析完成後,會自動輸出開挖回填的土方量、混凝土與鋼筋的數量計算表,且繪製擋土牆之配筋圖。本研究的分析案例是採用道路工程標準圖(1991)建議之擋土牆設計尺寸,固定止滑榫的三個變數,僅由其餘五個獨立設計變數進行最佳化分析,分析結果顯示實數編碼遺傳演算法均有機會搜尋至全域最佳解,且其與最佳解之差距甚小,所需時間較竭盡搜尋法(ESM)大幅縮短。
This thesis presents the application of optimal algorithm to the minimum cost design of cantilever retaining wall. The design variables include five independent variables: width of stem at the top, width of stem at the bottom, total width of base, length of toe, and depth of base; three dependent variables: width of key, depth of key and position of key. The constrained conditions involve design codes of Taiwan and lateral displacement of retaining wall (1/200). The objective function is the combined costs of soil excavation, retaining wall, and soil backfill. The optimal algorithm is the real-coded genetic algorithm (RGA). Based on the above concept, the automatically optimal design program of cantilever retaining wall was developed by the commercial software of Visual Basic 2005. The design drawing of bar arrangement; the quantities of soil excavation, backfill and concrete, and the number of steels would automatically output after finishing the optimal analysis. Subsequently, the case study was conducted to verify the efficiency and validity of the algorithm by comparing the solutions with the global optimum solutions obtained from exhaustive search method (ESM). The dimensions of the testing example were suggested by the road engineering standard design drawing with a little rational assumption for some unknown conditions. Among the designed dimensions, the width of key, depth of key and position of key were fixed, and the rest variables were covered in optimal analysis. From the results, RGA can find the optimum solutions from ESM, and spend less time than ESM. The error between RGA and ESM solution are about 0.1%.
1. 中國土木水利工程學會,混凝土工程設計規範與解說,土木401 -93,科技圖書,台北 (2005)。
2. 內政部建築研究所,建築物基礎構造設計規範,營建雜誌社,台北 (2001)。
3. 內政部營建署,建築技術規則,營建雜誌社,台北 (2000)。
4. 日本道路協會,道路橋示方書‧同解說,Ⅳ下部構造編,東京 (2002)。
5. 台灣營建研究院,營建物價,第五十八期,台北 (2007)。
6. 交通部公路總局,道路工程標準圖,台北 (1991)
7. 鍾明劍,「樁基礎最佳化設計之研究」,博士論文,國立中央大學土木工程研究所,中壢 (2006)。
8. 陳宏謀,「懸臂式擋土牆之最佳化設計」,碩士論文,國立清華大學應用數學研究所,新竹 (1980)。
9. 黃添伯,「懸臂式擋土牆之最佳化設計」,碩士論文,國立台灣大學農業工程研究所,台北 (1981)。
10. 賴景鎔,「單柱基腳與懸臂式擋土牆之最佳化設計」,碩士論文,私立淡江大學土木工程研究所,台北 (1984)。
11. 賴正義,「重力式擋土牆與懸臂式擋土牆之最佳化設計」,碩士論文,私立淡江大學土木工程研究所,台北 (1984)。
12. 許博傑、林其禹,「實數編碼與二位元編碼遺傳演算法之性能比較」,第二十五屆全國力學會議,台中市,第1677-1688頁 (2001)。
13. 李宇欣,「最佳化工程設計概念」,中國土木水利工程學刊,第二十九卷,第一期,第55-62頁 (2002)。
14. 向衍、蘇懷智、吳中如,「基於大壩安全監測資料的物理力學參數反演」,水利學報,第八期,第1-6頁 (2004)。
15. 余書維,「遺傳演算法則於群樁低價化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
16. Back, T., Hoffmeister, F., and Schwefel, H.P., “A survey of evolution strategies,” Proceeding of the Fourth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 2-9 (1991).
17. Ceranic, B., Fryer, C., and Baines, R.W., “An application of simulated annealing to the optimum design of reinforced concrete retaining structures,” Computers and Structures, No.79, pp. 1559-1581 (2001).
18. Das, B.M., Principles of Foundation Engineering, Brooks/Cole Publishing Company, Pacific Grove, California (1998).
19. De Jong, K.A., “An analysis of the behavior of a class of genetic adaptive systems,” Ph.D. Dissertation, University of Michigan (1975).
20. Eshelman, L.J., and Schaffer, J.D., “Real-coded genetic algorithms and internal-schemata,” Foundations of Genetic Algorithms 2, San Mateo, CA: Morgan Kaufmann, pp. 187-202 (1993).
21. Huang, C.C., “Seismic displacement analysis of free-Standing highway bridge abutments,” Journal of GeoEngineering, Vol. 1, No. 1, pp. 29-39 (2006).
22. Homaifar, A., Lai, S.H.Y., and Qi, X., “Constrained optimization via genetic algorithms,” Simulation, Vol. 62, No. 4, pp. 242-254 (1994).
23. Michalewicz, Z., “Genetic algorithms, numerical optimization and constraints,” Proceeding of the 6th International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, pp. 151-158 (1995).
24. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, New York (1992).
25. Sarbas, A., and Erbatur, F., “Optimization and sensitivity of retaining structures,” Journal of Geotechnical Engineering, Vol. 122, No. 8, pp. 649-656 (1996).
26. Wright, A.H., “Genetic algorithm for real parameter optimization,” Foundations of Genetic Algorithms 1, San Mateo, CA: Morgan Kaufmann, pp. 205-218 (1991).