| 研究生: |
盧育辰 Yu-Chen Lu |
|---|---|
| 論文名稱: |
以UDEC模擬互層材料之力學行為 Numerical study of mechanical properties on interlayered material by using UDEC |
| 指導教授: |
田永銘
Yong-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 189 |
| 中文關鍵詞: | 破壞準則 、互層地層 、人造互層岩體 、UDEC |
| 外文關鍵詞: | UDEC, artificial interlayered rock, interlayered formation, failure criteria |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
互層材料具有異質性及異向性之力學性質,故在實驗或理論分析及研究較一般均質或等向性之大地材料複雜許多。互層材料之工程性質與力學行為主要受到互層岩體節理之強度與變形行為影響,顯示出互層材料的強度和變形性與節理勁度和層面方向性有直接的關係。
本研究將採取以分離元素法及顯性有限差分法為理論基礎所發展之Universal Distinct Element Code 3.0(簡稱UDEC 3.0)做為分析工具,對互層材料進行無圍壓縮、三軸試驗與地層承載力試驗之模擬。藉由選定之模型,進行模擬試驗之力學行為與破壞模態研究。研究結果顯示,以UDEC模擬人造互層岩體於較高圍壓下之三軸試驗,其模擬結果與實驗數據有相當程度之落差,原因在於UDEC無法順利模擬出較軟弱的模型材料B會「被貫入(penetrated)」到模型材料A之張力裂縫內之情形。另外,利用UDEC模擬人造互層岩體的破壞模態方面,其模擬結果與實驗結果相當符合。
此外,本文以UDEC模擬互層地層承載力試驗,發現到UDEC模擬互層地層之承載力與互層傾角之關係,會呈現出類似於橫向等向性材料的強度特性(波動型或U型的強度特性),與蘇正中(2002)利用FLAC分析傾斜層狀地層之承載力會隨著角度增加而增加有所不同。原因在於本文利用UDEC進行互層地層分析時,考慮到層面參數的影響,與蘇正中(2002)利用FLAC分析沒有考慮到層面因素影響而有所差異。
The mechanical behaviors of interlayered materials are much more complicated than that of isotropic materials. In fact, these mechanical behaviors are subjected to joints of rock mass or discontinuities of materials.
The Universal Distinct Element Code version 3.0 (UDEC 3.0) is adopted in this study to simulate uniaxial compressive tests, triaxial compressive tests and bearing capacity tests on interlayered materials.
The UDEC simulations of uniaxial compressive tests and triaxial compressive tests analysis are in accordance with the experiment data of failure modes. But UDEC can not simulate and analyze the situation that material B (weaker material) is penetrated into tensile cracks of material A (more brittle and stronger material) in higher confining pressures very well. That’s the reason why predicted strength will be different from experimental data.
In Su’s (2002) study, analyzing with FLAC, it showed that the correlation between bearing capacity and orientation angle is a positive relation. But in this study, the UDEC simulation results of analyzing bearing capacity tests show that the correlation between bearing capacity and orientation angles is more likely the strength behaviors (U type or undulatory type) of transversely isotropic materials. The difference between this study and Su (2002) study is, this study considers the influence of joint parameters, but Su (2002) study does not.
(1) 田永銘、王仲宇、黃宗義、賴逸少,「人造互層岩體之組成律及破壞準則」,行政院國家科學委員會專題研究計畫成果報告,中壢(1994)。
(2) 田永銘、王仲宇、王仁正、賴逸少,「人造異向性岩石製作及其力學性質(I)」,行政院國家科學委員會專題研究計畫成果報告,中壢(1995)。
(3) 田永銘、許宗傑、陳慶洪,「人造異向性岩石製作及其力學性質(II)」,行政院國家科學委員會專題研究計畫成果報告,中壢(1996)。
(4) 田永銘、趙柏烽、楊世和,「人造異向性岩石製作及其力學性質(III)」,行政院國家科學委員會專題研究計畫成果報告,中壢(1997)。
(5) 宋銘峰,「人造軟弱互層岩體之製作及其介面力學性質量測」,碩士論文,國立中央大學土木工程研究所,中壢(1998)。
(6) 李瑋埼,「利用UDEC探討節理岩體之破壞行為」,碩士論文,淡江大學土木工程研究所,臺北(1999)。
(7) 吳偉豪,「橫向等向性併構岩之製作與力學性質」,碩士論文,國立中央大學土木工程研究所,中壢(2006)。
(8) 李宏輝,「併構岩石力學行為之機制研究-以個別元素法探討」,博士論文,國立臺灣大學土木工程研究所,臺北(2008)。
(9) 林宏憲,「水平節理隊岩石單壓強度之影響」,碩士論文,國立臺灣大學土木工程研究所,臺北(1993)。
(10) 梁至仁,「層狀地層之承載力」,碩士論文,國立中央大學土木工程研究所,中壢(1999)。
(11) 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程研究所,中壢(2005)。
(12) 黃宗義,「人造互層岩體之組成律及破壞準則」,碩士論文,國立中央大學土木工程研究所,中壢(1994)。
(13) 楊長義、黃燦輝,「規則節理岩體破壞模式之預測」,1992岩盤工程研討會論文集,臺南,成功大學,第547-558頁(1992)。
(14) 葉家宏,「以應力轉換法模擬橫向等向性岩石之力學行為」,碩士論文,國立中央大學土木工程研究所,中壢(2008)。
(15) 謝翠萍,「材料空間變異性對軟弱邊坡之影響」,碩士論文,朝陽科技大學營建工程系,台中(2005)。
(16) 蘇正中,「傾斜互層地層之承載力分析」,碩士論文,國立中央大學土木工程研究所,中壢(2002)。
(17) Barton, N. R., “The shear strength of rock and rock joints,” International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 13, No. 10, pp. 1-24(1976).
(18) Donath, F. A., “Strength variation and deformation behavior in anisotropic rock,” In State of Stress in the Earth’s Crust, Eds. Judd, W.R., Elsevier, Amsterdam, pp. 280-297(1964).
(19) Choi, S. O., and Chung, S. K., “Stability analysis of jointed rock slopes with the Barton-Bandis constitutive model in UDEC” International Journal of Rock mechanics and Mining Sciences, Vol. 41, No. 3, CD-ROM(2004).
(20) Hoek, E. and Brown, E.T., Underground Excavations in Rock, Institution of Mining and Metallurgy, London, pp. 137-162(1980).
(21) Hoek, E., “Strength of jointed rock masses,” 23rd Rankine Lecture, Geotechnique, Vol. 33, No. 3, pp. 187-223(1983).
(22) Hoek, E., and Brown, E. T., “The Hoek-Brown failure criterion, In rock engineering for underground excavations,” Proc. of 15th Canadian rock mech. Symp., Eds Curran, J. C., pp. 31-38(1988).
(23) ISRM, Rock Characterization Testing and Monitoring, Pergamon Press, Oxford (1981).
(24) Jaeger, J.C., “Shear failure of anisotropic rocks,” Geol. Mag., Vol. 97, pp. 65-72(1960).
(25) Mclamore, R., and Gray, K. E., “The mechanical behavior of anisotropic sedimentary rocks,” Journal of Engineering for Industry, Trans. of the ASME, Vol. 89, pp. 63-73(1967).
(26) Nasseri, M. H. B., Rao, K. S., and Ramamurthy, T., “Anisotropic strength and deformation behavior of Himalayan schists,” International Journal of Rock mechanics and Mining Sciences, Vol. 40, pp. 3-23(2003).
(27) Niandou, H., Shao, J. F., Henry, J. P., and Fourmaintraux, D., “Laboratory investigation of the mechanical behavior of Tournemire shale,” International Journal of Rock mechanics and Mining Sciences, Vol. 34, pp. 3-16(1997).
(28) Nova, R., “The failure of transversely isotropic rocks in triaxail compression,” International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 17, pp. 325-332(1980).
(29) Ramamurthy, T., Rao, G. V., and Rao, K. S., “A strength criterion for rocks,” In Proc. Indian Geotech. Conf., Roorkee, Vol. 1, pp. 59-64(1985).
(30) Ramamurthy, T., “Strength and modulus responses of anisotropic rocks,” In Comprehensive Rock Engineering, Vol. 1, Fundamentals Pergamon Press, Oxford, pp. 313-329(1993).
(31) Sonmez, H., Gokceoglu, C., Medley, E. W., Tuncay, E., and Nefeslioglu, H. A., “Estimating the uniaxail compressive strength of a volcanic bimrock,” International Journal of Rock mechanics and Mining Sciences, Vol. 43, No. 4, pp. 554-561(2006).
(32) Tien, Y. M., and Tsao, P. F., “Preparation and mechanical properties of artificial transversely isotopic rock,” International Journal of Rock mechanics and Mining Sciences, Vol. 37, pp. 1001-1012(2000).
(33) Tien, Y. M., and Kuo, M. C., “A failure criterion for transversely isotropic rocks,” International Journal of Rock mechanics and Mining Sciences, Vol. 38, pp. 399-412(2001).
(34) UDEC, Universal Distinct Element Code, Volume I: User’s Manual, Itasca Consulting Group Inc., USA(1996).
(35) UDEC, Universal Distinct Element Code, Volume II: Verification Problems and Example Applications, Itasca Consulting Group Inc., USA(1996).
(36) UDEC, Universal Distinct Element Code, Volume III: Appendices, Itasca Consulting Group Inc., USA(1996).
(37) Wardle, L.J., and Gerrard, C. M., “The equivalent anisotropic properties of layered rock and soil masses,” Rock Mechanics, Vol. 4, pp. 155-175 (1972).