| 研究生: |
徐梓恩 Zih-En Syu |
|---|---|
| 論文名稱: |
基於加速度計的高精度步數演算法 Accelerometer-Based Accurate Step Counting Algorithm |
| 指導教授: |
王淵弘
Yung-Hung Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 計步 、即時 、自相關函數 、偽陽性 |
| 外文關鍵詞: | step counting, real-time, autocorrelation function, false positive |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多文獻指出中強度的行走對身體非常有益,因此很多人都會設定每日行走一定的步數或時間目標。若能準確的測量步數,並且降低誤算情況的發生,對於使用者制定合適的運動計劃和達到身體健康目標非常有價值。
本研究提出自適性自相關函數計步(Adaptive Autocorrelation Step Counting, APASC)演算法,該演算法為一即時運算演算法,以自相關函數推算訊號的週期和規律性,並以加速度值振盪範圍、週期、規律性和連續性判斷訊號是否為行走狀態,最後計算被判定為行走狀態區域的步數,同時,演算法也能統計不同強度行走運動的時長,提供使用者參考。
本研究將人的動作分為4個種類,分別為一般行走、非一般行走、不規律非行走和規律非行走,實驗數據總長約22小時,共包含510組數據,運用這些數據對演算法進行修改和驗證,以提高演算法在這4類實驗中的準確度。
最終,本研究提出的APASC演算法在一般行走的實驗中,誤差為1.62%;在非一般行走的實驗中,誤差為11.16%。對於總長約13.75小時的不規律非行走實驗,誤算290步;對於總長約1.5小時的規律非行走實驗,誤算2460步。
Many studies have indicated that moderate-intensity walking is highly beneficial for the body. Consequently, many people set daily step or time goals for walking. Accurate step counting and reducing inaccuracies are highly valuable for users in devising appropriate exercise plans and achieving their physical health objectives.
This study proposes the Adaptive Autocorrelation Step Counting (APASC) algorithm, which is a real-time computational algorithm. The algorithm utilizes autocorrelation functions to infer the periodicity and regularity of signals. It further assesses the oscillation range, period, regularity, and continuity of acceleration values to determine whether a signal corresponds to a walking state. Subsequently, the algorithm calculates the step count within the identified regions classified as walking states. Additionally, the algorithm is capable of measuring the duration of walking exercises at different intensity levels, providing users with valuable references.
In this study, human movements were categorized into four types: normal walking, non-normal walking, irregular non-walking, and regular non-walking. The experimental dataset had a total duration of approximately 22 hours, comprising 510 data sets. These data were utilized to modify and validate the algorithm, aiming to improve its accuracy across these four experimental categories.
Finally, the APASC algorithm proposed in this study achieved an error rate of 1.62% in the normal walking experiment and 11.16% in the non-normal walking experiment. For the irregular non-walking experiment, which lasted approximately 13.75 hours, the algorithm overestimated the step count by 290 steps. For the regular non-walking experiment, which lasted approximately 1.5 hours, the algorithm overestimated the step count by 2460 steps.
[1] M. Iwane, M. Arita, S. Tomimoto, O. Satani, M. Matsumoto, K. Miyashita, and I. Nishio., “Walking 10, 000 steps/day or more reduces blood pressure and sympathetic nerve activity in mild essential hypertension,” Hypertension Research, vol. 23, no. 6, pp. 573-580, 2000.
[2] A. M. Swartz, S. J. Strath, D. R. Bassett Jr, J. B. Moore, B. A. Redwine, M. Groër, and D. L. Thompson., “Increasing daily walking improves glucose tolerance in overweight women,” Preventive medicine, vol. 37, no. 4, pp. 356-362, 2003.
[3] S. C. Moore, A. V. Patel, C. E. Matthews, A. Berrington de Gonzalez, Y. Park, H. A. Katki, M. S. Linet, E. Weiderpass, K. Visvanathan, and K. J. Helzlsouer., “Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis,” PLoS medicine, vol. 9, no. 11, pp. e1001335, 2012.
[4] J. A. Levine, S. K. McCrady, L. M. Lanningham-Foster, P. H. Kane, R. C. Foster, and C. U. Manohar., “The role of free-living daily walking in human weight gain and obesity,” Diabetes, vol. 57, no. 3, pp. 548-554, 2008.
[5] C. Tudor-Locke, C. L. Craig, W. J. Brown, S. A. Clemes, K. De Cocker, B. Giles-Corti, Y. Hatano, S. Inoue, S. M. Matsudo, and N. Mutrie., “How many steps/day are enough? For adults,” International Journal of Behavioral Nutrition and Physical Activity, vol. 8, no. 1, pp. 1-17, 2011.
[6] C. Tudor-Locke, C. L. Craig, M. W. Beets, S. Belton, G. M. Cardon, S. Duncan, Y. Hatano, D. R. Lubans, T. S. Olds, and A. Raustorp., “How many steps/day are enough? for children and adolescents,” International Journal of Behavioral Nutrition and Physical Activity, vol. 8, no. 1, pp. 1-14, 2011.
[7] C. Tudor-Locke, C. L. Craig, Y. Aoyagi, R. C. Bell, K. A. Croteau, I. De Bourdeaudhuij, B. Ewald, A. W. Gardner, Y. Hatano, and L. D. Lutes., “How many steps/day are enough? For older adults and special populations,” International journal of behavioral nutrition and physical activity, vol. 8, no. 1, pp. 1-19, 2011.
[8] Apple Watch. https://support.apple.com/zh-tw/guide/watch/apd3bf6d85a6/watchos (accessed July 24, 2023)
[9] Garmin Connect. https://connect.garmin.com/ (accessed July 24, 2023)
[10] 小米手環. https://www.mi.com/tw/miband/#s2 (accessed July 24, 2023)
[11] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury., "No need to war-drive: Unsupervised indoor localization." Proceedings of the 10th international conference on Mobile systems, applications, and services. pp. 197-210, 2012.
[12] F. Gu, K. Khoshelham, J. Shang, F. Yu, and Z. Wei., “Robust and accurate smartphone-based step counting for indoor localization,” IEEE Sensors Journal, vol. 17, no. 11, pp. 3453-3460, 2017.
[13] S. Beauregard, "A helmet-mounted pedestrian dead reckoning system." 3rd International Forum on Applied Wearable Computing 2006. VDE. pp. 1-11, 2006.
[14] P. Goyal, V. J. Ribeiro, H. Saran, and A. Kumar., "Strap-down pedestrian dead-reckoning system." 2011 international conference on indoor positioning and indoor navigation. IEEE. pp. 1-7, 2011.
[15] M. Mladenov, and M. Mock, "A step counter service for Java-enabled devices using a built-in accelerometer." Proceedings of the 1st international workshop on context-aware middleware and services: affiliated with the 4th international conference on communication system software and middleware (COMSWARE 2009). pp. 1-5, 2009.
[16] A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara., "A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU." 2009 IEEE International Symposium on Intelligent Signal Processing. IEEE. pp. 37-42, 2009.
[17] R. Zhang, A. Bannoura, F. Höflinger, L. M. Reindl, and C. Schindelhauer., "Indoor localization using a smart phone." 2013 IEEE sensors applications symposium proceedings. IEEE. pp. 38-42, 2013.
[18] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen., "Zee: Zero-effort crowdsourcing for indoor localization." Proceedings of the 18th annual international conference on Mobile computing and networking. pp. 293-304, 2012.
[19] A. Brajdic, and R. Harle, "Walk detection and step counting on unconstrained smartphones." Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing. pp. 225-234, 2013.
[20] M.-S. Pan, and H.-W. Lin, “A step counting algorithm for smartphone users: Design and implementation,” IEEE Sensors Journal, vol. 15, no. 4, pp. 2296-2305, 2014.