跳到主要內容

簡易檢索 / 詳目顯示

研究生: 温書涵
Shu-Han Wen
論文名稱: 含三價釤離子配位聚合物內淬熄效應之研究
指導教授: 張伯琛
Bor-Chen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: 稀土元素釤離子之淬熄效應
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以中溫水熱法合成以1,4-cyclohexanedicarboxylate (C8H10O4, 簡稱CHDC)作為配位基含有不同莫耳比例稀土元素之R2(CHDC)3 (R= Y, Tb, Sm) 配位聚合物。這些聚合物皆以單晶及粉末X光繞射實驗去鑑定晶體的結構與純度,並以感應耦合電漿原子發射光譜分析儀(ICP-AES)鑑定配位中心之元素比例。在含三價釤離子(trivalent samarium)的配位聚合物光譜中,我們觀測到複雜的淬熄現象(quenching phenomena)。針對這些不同稀土元素比例之配位聚合物,我們取得完整之光致放光光譜(photoluminescence spectra)、激發光譜(excitation spectra)及時間解析光譜(time-resolved spectra),並藉由分析這些光譜資料,我們成功地以動力學模型去解釋在這些配位聚合物中的淬熄現象,並取得完整的相關速率常數。由分析結果得知其中存在兩種淬熄機制,第一種是在YxSmyTb2-x-y(CHDC)3化合物中,淬熄是與Sm3+與Tb3+的濃度無關;另一種則是在SmxTb2-x(CHDC)3化合物中,淬熄是與Sm3+濃度成正比關係。另外,使用光源355 nm激發時得到的各個化合物淬熄速率都較使用光源303.5 nm時大,顯示以355 nm激發時淬熄效應較為嚴重。


    Coordination polymers, R2(C8H10O4)3, with 1,4-cyclohexanedicarboxylate (C8H10O4, CHDC) ligands and different compositions of rare earth elements (R= Y, Tb, and Sm) were synthesized by mid-temperature hydrothermal method. Single crystal and powder x-ray diffraction (XRD) data of these compounds were acquired for confirming their structure and purity. Inductively Coupled Plasma Atomic Emission Spectra (ICP-AES) were also obtained to verify the compositions of rare earth elements. In the spectra of coordination polymers containing trivalent samarium (Sm3+), complicated quenching phenomena were observed. For these coordination polymers, photoluminescence (PL), excitation, and time-resolved spectra were recorded. Kinetics models were adopted for analyzing the spectral data. There exist two quenching mechanisms. For YxSmyTb2-x-y(CHDC)3, the quenching rate is irrelevant to the Sm3+ concentration, whereas for SmxTb2-x(CHDC)3, the quenching rate is proportional to the Sm3+ concentration. The results can successfully explain the observed quenching phenomena, and complete quenching rate constants were determined.

    中文摘要 Ⅰ 英文摘要 Ⅱ 謝誌 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅹ 第一章 緒論 1 1-1 鑭系元素與稀土元素 1 1-2 鑭系元素之放光原理 3 1-2-1 鋱離子發光原理 4 1-2-2 釤離子發光原理 6 1-2-3 銪離子發光原理 6 1-3 研究動機與目標 9 第二章 實驗 12 2-1 實驗目標 12 2-2 合成方法 12 2-2-1 中溫水熱合成法 13 2-2-2 實驗藥品 14 2-2-3 R2(CHDC)3晶體合成步驟 15 2-3 鑑定方法 15 2-3-1 單晶X光繞射 16 2-3-2 粉末X光繞射實驗 17 2-3-3 感應耦合電漿原子發射光譜儀 18 2-4 光譜技術簡介 18 2-4-1 吸收光譜(absorption spectra) 19 2-4-2 放射光譜(emission spectra) 19 2-5 光學元件介紹 20 2-5-1 光源 21 2-5-2 單光儀 22 2-5-3 偵測器 23 2-5-4 示波器 24 2-6 光譜分析研究及儀器裝置 25 2-6-1 光致放光光譜 25 2-6-2 激發光譜 27 2-6-3 時間解析光譜 29 第三章 結果與討論 31 3-1 R2(CHDC)3 31 3-2 晶體鑑定 31 3-3 晶體結構 33 3-4 光致放光光譜 35 3-5 放光生命期及訊號上升時間 37 3-6 濃度淬熄現象 38 3-7 能量提供者之放光衰退曲線 40 3-8 三維模型分析具濃度淬熄現象之放光衰退曲線 43 3-9 激發光譜 45 3-10 303.5 nm激發之放光衰退曲線 46 3-11 303.5 nm激發之放光衰退曲線分析 48 3-12 355 nm激發之放光衰退曲線分析 54 3-13 淬熄速率與機制之分析 61 3-14 Tb3+之放光生命期 69 第四章 結論 70 參考文獻 72

    1. Evans, R. C.; Carlos, L. D.; Douglas, P.; Rocha, J. Tuning the emission colour in mixed lanthanide microporous silicates: energy transfer, composition and chromaticity. Journal of Materials Chemistry 2008, 18, 1100-1107.
    2. Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. The Journal of Chemical Physics 1989, 90, 3443-3457.
    3. Luk, C. K.; Richardson, F. S. Circularly polarized luminescence and energy transfer studies on carboxylic acid complexes of europium (III) and terbium (III) in solution. Journal of the American Chemical Society 1975, 97, 6666-6675.
    4. An, Y.; Schramm, G. E.; Berry, M. T. Ligand-to-metal charge-transfer quenching of the Eu3+ (5D1) state in europium-doped tris (2,2,6,6-tetramethyl-3,5-heptanedionato)gadolinium (III). Journal of Luminescence 2002, 97, 7-12.
    5. Blasse, G.; Grabmaier, B. C. Luminescence Materials 1994, Springer-Verlag, Berlin, New York.
    6. Cotton, S. Lanthanide and Actinide Chemistry 2006, John Wiley & Sons, Inc., Chichester, England.
    7. 陳姿寧, 國立中央大學化學系碩士論文. (2014).
    8. 李穗美, 國立中央大學化學系碩士論文. (2015).
    9. Ferreira, A.; Ananias, D.; Carlos, L. D.; Morais, C. M.; Rocha, J. Novel microporous lanthanide silicates with tobermorite-like structure. Journal of The American Chemical Society 2003, 125, 14573-14579.
    10. 陳孟琳, 國立中央大學化學系碩士論文. (2013).
    11. Wang, S. L.; Richerson, J. W., Jr. Neutron powder diffraction study of the mixed-valence vanadium pyrophosphate RbV3P4O17. Zeitschrift für Kristallographie-Crystalline Materials 1992, 202, 227-236.
    12. West, A. R. Solid State Chemistry and Its Applications 1984, Wiley, Chichester, West Sussex.
    13. Johnson, J. W.; Jacobson, A. J. Redox intercalation reactions of VOPO4•2H2O. Angewandte Chemie International Edition in English 1983, 22, 412-413.
    14. Barbara, M. The flux growth of single crystals of rare earth perovskites (orthoferrites, orthochromites and aluminates). Journal of Crystal Growth 1969, 5, 323-328.
    15. 陳逸翔, 國立中央大學化學系碩士論文. (2012).
    16. Blasse, G. Luminescence of inorganic solids: from isolated centres to concentrated systems. Progress in Solid State Chemistry 1988, 18, 79-171.
    17. Wu, Z. C.; Shi, J. X.; Wang, J.; Gong, M. L.; Su, Q. A novel blue-emitting phosphor LiSrPO4: Eu2+ for white LEDs. Journal of Solid State Chemistry 2006, 179, 2356-2360.
    18. Kellendonk, F.; Blasse, G. Luminescence and energy transfer in EuAl3B4O12. The Journal of Chemical Physics 1981, 75, 561-571.
    19. Yokota, M.; Tanimoto, O. Effects of diffusion on energy transfer by resonance. Journal of The Physical Society of Japan. 1967, 22, 779-784.
    20. Bernard, A.; Gravina, R. The emission spectrum of yttrium monoxide: new rotaional and vibrational results on the A2Π-X2Σ+ system. The Astrophysical Journal Supplement Series 1983, 52, 443-450
    21. Hasegawa, T. A divalent rare earth oxide semiconductor: yttrium monoxide. Applied Physics Letters 2016, 108, 122102
    22. Nicholas, S.; Albert, A. Evaluation of the exothermicity of the chemi-ionization reaction Sm + O  SmO+ + e-. The Journal of Chemical Physics 2015, 142, 134307.

    QR CODE
    :::