| 研究生: |
陳世迪 Shih-di Chen |
|---|---|
| 論文名稱: |
格狀自動機探討組織工程細胞體外培養研究 Modeling and Simulation of the Tissue Engineering Cell Culture Using Cellular Automata. |
| 指導教授: |
鍾志昂
Chih-ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 接觸限制 、組織工程 、格狀自動機 、細胞隨機漫步 、養分傳輸限制 |
| 外文關鍵詞: | cellular automata, tissue engineering, random walk, nutrient transport restriction, contact inhibition |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
組織工程的目的是能製造出具有完整功能性的組織,並且成功修復病患的受損組織。目前常見的治療方式是先在體外將細胞種殖在具有生物相容性的支架上,培養出一定數量的細胞之後再將支架殖入體內。組織工程是結合多種領域的綜合學門,而量化的數學模型可較充分的解釋實驗結果,並且歸納出影響系統的重要因子,預測出的模擬結果更有助於改善培養環境的設計。
本文針對靜態培養環境下,細胞在支架內的生長與活動進行研究,使用格狀自動機模擬細胞的活動行為,包括細胞增殖、隨機漫步、細胞聚合、接觸限制以及細胞活性抑制等現象,並且以有限差分法對養分的擴散-消耗方程式進行數值計算,將計算所得的養分濃度場導入細胞增殖的機制內,以產生對應於養分濃度的非同步細胞增殖行為。本研究發現在靜態培養且細胞均勻種殖的條件下會存在一個最佳的細胞移動速度,細胞移動的速度過快反而不利於細胞生長。並且在均勻種殖條件下的細胞生長已經趨緩之後,集中種植條件下的細胞還可繼續增殖。
本模型所使用的格狀自動機提供了非常具有彈性的方法來描述細胞生長的問題,可繼續擴展模型中的規則以探討更深入的細胞活動機制。而在集中種殖條件下配合極緩慢的細胞移動速度可得到更緊密的細胞分佈的概念也可用以改進細胞的種植及培養技術。
To manufacture functional tissues and repair damaged tissues in patients are the aims of the tissues engineering. The popular therapeutic strategy is implantation of generated tissues from in vitro cell-scaffold construction, and then implanted the scaffold into the patients. Tissues engineering is a discipline composed of many subjects, quantification by means of mathematical model can interpret experimental results and identify the dominating factors of the system. Furthermore, predictive modeling offers huge potential in the optimization of culture conditions.
The literature studied the dynamic process of cells growth in the scaffold under static culture, used cellular automata to simulate cell proliferation, random walk, cell aggregation, contact inhibition, and inhibition of cell viability. Also using the finite difference method to solve diffusion-reaction equation of the nutrients can find the concentration field of nutrients in the scaffold, and then integrate it into cells dynamic process to form asynchronous cell proliferation. The research found there was the optimal cell migration speed with initial uniform seeding in static culture, and over-high migration speed was disadvantageous to cells growth, and cells in non-uniform seeding could proliferate for a long time as cells proliferation in uniform seeding slowed down.
The model offered an alternative method to describe the cells growth process using cellular automata, and expanding the rules in the model to study other process of cells growth was possible. The concept of using slow migration speed in non-uniform seeding to form compact cell distribution may improve the design of cell seeding and culture.
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D. 1989. Molecular Biology of the Cell. Garland Publishing, New York.
Boyce, S. T. 2004. Fabrication, quality assurance, and assessment of cultured skin substitutes for treatment of skin wounds. Biochem. Eng. J. 20: 107-112.
Chang, C., Lauffenburger, D.A., Morales, T.I. 2003. Motile chondrocytes from newborn calf: migration properties and synthesis of collagen II. OsteoArthritis and Cartilage 11: 603-612.
Cheng, G., Youssef, B.B., Markenscoff, P., Zygourakis, K. 2006. Cell Population Dynamics Modulate the Rates of Tissue Growth Processes. Biophysical Journal 90: 713-724.
Chung, C. A., Yang, C. W., Chen, C. W. 2006. Analysis of Cell Growth and Diffusion in a Scaffold for Cartilage Tissue Engineering. Biotechnology and Bioengineering 94(6): 1138-1146.
Freed, L.E., Vunjak-Novakovic, G., Marquis, J.C., and Langer, R., 1994. Kinetics of Chondrocyte Growth in Cell-Polymer Implants. Biotechnology and Bioengineering 43: 597-604.
Galban, C.J., and Locke, B.R. 1999a. Analysis of Cell Growth Kinetic and Substrate Diffusion in a Polymer Scaffold. Biotechnology and Bioengineering 65(2): 121-132.
Galban, C.J., and Locke, B.R. 1999b. Effects of Spatial Variation of Cells and Nutrient and Product Concentrations Coupled with Product Inhibition on Cell Growth in a Polymer Scaffold. Biotechnology and Bioengineering 64(6): 633-643.
Griffith, L.G., Naughton, G. 2002. Tissue engineering-Current challenges and expanding opportunities. Science 295: 1009-1014.
Haselgrove, J.C., Shapiro, I.M., Silverton, S.F. 1993. Computer Modeling of the Oxygen Supply and Demand of Cells of the Avian Growth Cartilage. Am J Physiol 256: C497-C506.
Hunziker, E. B. 2001. Articularcartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10: 432-463.
Kino-oka, M., Maeda, Y., Yamamoto, T., Sugawra, K., Taya, M. 2005. A Kinetic Modeling of Chondrocyte Culture for Manufacture of Tissue-Engineered Cartilage. Journal of Bioscience and Bioengineering 99(3): 197-207.
Kremer, M., Lanf, E., Berger, A. C. 2000. Evaluation of dermal-epidermal skin equivalents (‘composite-skin’) of human keratinocytes in a collagen-glycosaminoglycan matrix (IntegraTM Artificial Skin). Br. J. Plast. Surg. 53: 459-465.
Lackie, J.M. 1986. Cell Movement and Cell Behaviour. Allen and Unwin, London, UK.
Langer, R., Vacanti, J.P. 1993. Tissue engineering. Science 260: 920-926.
Lysaght, M. J.,Hazlehurst, A. L. 2004. Tissue engineering: the end of beginning. Tissue Engineering 10: 309-317.
Malda, J., Rouwkema, J., Martens, D.E., Le Comte, E.P., Kooy, F.K., Tramper, J., van Blitterswijk, C.A., and Riesle, J. 2004. Oxygen Gradients in Tissue-Engineered PEGT/PBT Cartilaginous Constructs: Measurement and Modeling. Biotechnology and Bioengineering 86: 9-18.
Moser, H. 1958. The Dynamics of Bacterial Population Chemostat. Washington, DC: Carnegie Institute Publishers.
Obradovic, B., Freed, L. E., Langer, R., and Vunjak-Novakovic, G. 1997. Bioreactor Studies of Natural and Engineered Cartilage Metabolism. Proc. of the Topical Conf. on Biomaterials, Carriers for Drug Delivery, and Scaffolds for Tissue Engineering. p. 335.
Obradovic, B., Carrier, R. L., Vunjak-Novakovic, G., Freed, L. E. 1999. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnology and Bioengineering 63: 197-205.
Richardson, R. S. 2003. Oxygen transport and utilization : an integration of the muscle system. Advances in Physiology Education. 27(4): 183-191.
Yashiki, S., Hara, Y., Kino-oka, M., Taya, M. 2004. A Three-dimensional Growth Model for Chondrocytes Embedded in Collagen Gel. Kagaku Kogaku Ronbunshu 30: 515-521.
Zagourakis, K., Bizios, R., Markenscoff, P. 1991. Proliferation of Anchorage-Dependent Contact-Inhibited Cells: I. Development of Theoretical Models Based on Cellular Automata. Biotechnology and Bioengineering 38: 459-470.