| 研究生: |
凃亦峻 Yi-chun Tu |
|---|---|
| 論文名稱: |
位於可液化砂土層中單樁基礎受震反應的離心模擬 Centrifuge modeling on the Seismic Response of Mono-pile Foundations in Liquefiable Sandy Soil Subjected to Earthquake Loading |
| 指導教授: |
李崇正
Chung-Jung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 192 |
| 中文關鍵詞: | 單樁基礎 、p-yΔ曲線法 、超額孔隙水壓比 、地盤反力係數 、液化 、模型計測樁 |
| 外文關鍵詞: | excess pore water pressure, p-yΔ curve method, coefficient of horizontal subgrade reaction, mono-pile foundation |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣雖然擁有豐富的風資源,但東海岸地形陡峭,並不適合發展離岸風力發電,因此風力發電設施多設置於西部沿海。然而西岸海底表層多屬於疏鬆砂土,地震時淺層砂土發生液化的可能性相當高,而國外目前對位於地震區的離岸風力電廠,其風力發電機組之基礎土壤發生液化對基礎穩定的評估方法尚無深入研究。本研究以離心模型試驗探討單樁基礎土壤液化時,單樁基礎的受震反應。
本研究以丹麥離岸風力發電機組(Horns Rev 1)之單樁基礎為原型,先將原型尺寸折減為40%,再依據尺度定律將折減後的單樁基礎縮尺,設計製作八十分之一的單樁基礎模型,在80g的離心加速度場進行試驗。離心模型試驗過程分別量測樁身彎矩歷時、加速度歷時、樁頂位移歷時與地表沉陷,並利用回歸分析求取單樁樁身彎矩分佈隨時間的變化。
試驗結果顯示,基樁受震時,乾砂試體最大彎矩量發生在深度4m(z/L=0.21)處,飽和砂試體最大彎矩量發生在深度6.4m(z/L=0.33)處,顯示淺層土壤液化時,土層束制基樁的深度會向深層發展。而當基樁上部載重塊的高度越高,由於基樁受震時上部載重產生的傾覆彎矩較大,因此樁身產生的彎矩量以及樁頭位移量較大。此外利用p-yΔ曲線法計算地盤反力係數kh,其結果顯示飽和砂試體淺層土層在超額孔隙水壓比ru值最大時kh接近最小值,深層土壤整體而言kh隨著振動週期數的增加而增加。
Offshore wind farms have recently been developed very maturely in Northern European country. Although the wind energy resource in the western coastline of Taiwan is very abundant, the offshore wind power industry has not been developed. Taiwan is located in the seismic zone, and the sea bed in the western coastline of Taiwan is deposited with very loose sandy soil that may be liquefied during large earthquakes. The current design code of wind turbine foundation does not give the detailed requirements of earthquake resistant design. And thus, a design guideline or code which proved by centrifuge modeling tests is strongly needed before construction projects undertaking. The research results will give the reference to the mono-pile for offshore wind turbines.
In this study, a series of dynamic shaking table tests of mono-pile foundations was conducted for the centrifuge pile models embedded in liquefiable sandy soil and carried out at an 80-g acceleration. According to the test results the fallowing findings were obtained. The maximum bending moment of pile in dry sand occurred at the depth of 4m (z/L=0.21) and the maximum bending moment of pile in saturated liquefiable sand occurred at the depth of 6.4m (z/L=0.33). The induced bending moment and the pile displacement are higher when the tip mass fixed on the top of the mono-pile foundations. The coefficient of horizontal subgrade reaction can be calculated by p-yΔ curve method. The values of the coefficient of horizontal subgrade reaction in shallow depths decrease while the excess pore water pressure increase during shaking. In the case of deep soil, the values of coefficient of horizontal subgrade reaction increase with the increasing number of cycles of shaking. And the coefficient of horizontal subgrade reaction suggested by Reese consist with the experimental results.
1. Abdoun, T., and Dobry R., “Evaluation of pile foundation response to lateral spreading,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 1051–1058 (2002).
2. Brandenberg, S.J., Boulanger, R.W., Kutter, B.L., and Chang, D., “Behavior of pile foundations in laterally spreading ground during centrifuge tests,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 11, pp. 1378-1391 (2005).
3. Chang. Y. L., and Feagin, L.B., “Change on lateral pile-loading tests,” Transaction of the American Society of Civil Engineers, Vol. 102, No. 1959, pp. 272-278 (1937).
4. Das, B.M., Fundamentals of soil dynamics, Elsevier, New York (1983).
5. Fretti, C., Lo Presti, D. C. F., and Pedroni, S., “A pluvial deposition method to reconstitute well-graded sand specimens,” Geotechnical Testing Journal, GTJODJ, Vol. 18, No. 2, pp. 292-298 (1995).
6. Fukushima, H., Nishimoto, S., and Tomisawa, K., “Coefficient of dynamic horizontal subgrade reaction of pile foundations on problematic ground in Hokkaido,” Proceedings of the Sixth International Conference on Physical Modelling in Geotechnics, Hong Kong, China, Vol. 1, pp. 993-1000 (2006).
7. Gonzalez, L., Abdoun, T., and Dobry, R., “Physical modeling and visualization of pile response to lateral spreading,” Proceedings of the Sixth International Conference on Physical Modelling in Geotechnics, Hong Kong, China, Vol. 1, pp. 921-926 (2006).
8. Ilyas, T., Leung, C.F., and Budi, S.S., “Centrifuge model study of laterally loaded pile groups in clay,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 3, pp. 274-283 (2004).
9. Jeong, S., Kim, Y., and Kim, J., “Influence on lateral rigidity of offshore piles using proposed p–y curves,” Ocean Engineering, Vol. 38, pp. 397–408 (2011).
10. Klinkvort, R.T., Leth, C.T. & Hededal, O., “Centrifuge modeling of a lateral cyclic loaded pile,” Proceedings of the Seventh International Conference on Physical Modelling in Geotechnics, Zurich, Switzerland, pp. 959-964 (2010).
11. Li, Z., Haigh, S.K., and Bolton, M.D., “Centrifuge modeling of monopole under cyclic lateral loads,” Proceedings of the Seventh International Conference on Physical Modelling in Geotechnics, Zurich, Switzerland, pp. 965-970 (2010).
12. Lin, S.S., Lai, C.H., Chen, C.H., and Ueng, T.S., “Derivation of cyclic p-y curves from instrumented dynamic lateral load tests,” Journal of Mechanics, Vol. 26, No. 2, pp. 123-133 (2010).
13. Martin, G.R., Finn, W. D. L., and Seed, H.B., “Fundamentals of liquefaction under cyclic loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. 5, pp. 423-438 (1975).
14. Offshore Standard DNV-OS-J101, Design of offshore wind turbine structures, Det Norske Veritas, Norway (2007).
15. Ozsu, E., Teymur, B., and Rouainia, M., “Lateral loading of tripod foundations in sand,” Proceedings of the Seventh International Conference on Physical Modelling in Geotechnics, Zurich, Switzerland, pp. 979-984 (2010).
16. Peralta, P. and Achmus, M., “An experimental investigation of piles in sand subjected to lateral cyclic loads,” Proceedings of the Seventh International Conference on Physical Modelling in Geotechnics, Zurich, Switzerland, pp. 985-990 (2010).
17. Reese, L.C., Cox, W.R., and Koop, F.D., “Analysis of laterally load piles in sand,” Proceedings of Fifth Annual Offshore Technology Conference, Houston, Texas, Vol. 2, pp. 473-485 (1974).
18. Reese, L.C., and Matlock, H., “Non-dimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth,” Proceedings of the Eighth Texas Conference on Soil Mechanics and Foundation Engineering, University of Texas, Austin, Texas (1956).
19. Rosquqet, F., Thorel, L., Garnier, J., and Canepa, Y., “Lateral cyclic loading of sand installed pile,” Soils and Foundations, Vol. 47, No. 5, pp. 821-832 (2007).
20. Seed, H.B., Idriss, I.M., Makdisi, F., and Banerji, N., “Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analysis,” Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, California (1975).
21. Terzaghi, K., “Evaluation of coefficients of subgrade reaction,” Geotechnique, Vol. 5, No. 4, pp. 297-326 (1955).
22. Tokimatsu, K., Suzuki, H., and Sato, M., “Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation,” Soil Dynamics and Earthquake Engineering, Vol. 25, pp. 753-762 (2005).
23. Yao, S., Kobayashi, K., Yoshida, N., and Matsuo, H., “Interactive behavior of soil-pile-superstructure system in transient state to liquefaction by means of large shake table tests,” Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 397-409 (2004).
24. 中華民國大地工程學會,建築物基礎構造設計規範,中華民國 (2001)。
25. 日本道路協會,道路橋示方書‧同解說,日本 (1996)。
26. 陳家漢、翁作新,「可能液化地盤中模型樁振動台試驗」,地工技術,第125期,第35-44頁 (2010)。
27. 李崇正、陳慧慈、魏雨辰、鄺伯軒、連紘震、洪汶宜、何泰源、吳文隆,「以離心模型振動台試驗模擬砂土層液化行為」,地工技術,第125期,第95-104頁 (2010)。
28. 張有齡、周南山,「張氏簡易側樁分析法(上篇:靜力部份)」,地工技術,第25期,第64-82頁 (1989)。
29. 歐晉德,「基樁之側向支承力」,地工技術,第18期,第60-68頁 (1987)。
30. 陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢 (1999)。
31. 郭玉潔,「探討積層版試驗箱進行動態離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,中壢 (2009)。
32. 鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
33. 王崇儒,「利用彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
34. 莊汶雅,「以動態離心模型試驗模擬沉埋隧道上浮機制」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
35. 蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,中壢(2010)。