跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡孟哲
Meng-che Tsai
論文名稱: 奇異積分的加權有界性
The weighted boundedness of singular integral operators
指導教授: 林欽誠
Chin-cheng Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 96
語文別: 英文
論文頁數: 22
中文關鍵詞: 奇異積分有界性
外文關鍵詞: weight, boundedness, singular integral operators
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇文章中,我們給出一些方法去證明算子從 到 的有界性。當假設條件與Muckenhoupt權類有關時,我們可以了解到雙權模不等式的證明只依賴於單權模不等式。我們給出一些例子去說明如何證明它,那就是我們證明極大算子 、奇異積分算子 、極大奇異積分算子 、Marcinkiewicz積分算子 、Marcinkiewicz積分算子 關於面積積分 以及Marcinkiewicz積分算子 關於Littlewood-Paley -函數都是從 到 有界。最後我們用另一個假設條件去證明Marcinkiewicz積分算子 是從到 有界。


    In this paper, we give some methods such that the operators are bounded from to .
    Under the condition related to the Muckenhoupt weights class, we realize that the proof of two weighted norm inequality only depends on one-weighted norm inequality. We give some examples to describe how did we prove it; that is, we proved that the maximal operator , the singular integral operator , the maximal singular integral operator , the Marcinkiewicz integral operator ,the Marcinkiewicz integral operator related to the area integral , and the Marcinkiewicz integral operator related to the Littlewood-Paley -function operator are all bounded from to .
    Finally, we prove that the Marcinkiewicz integral operator is bounded from to for another condition of .

    中文摘要...........................................i 英文摘要...........................................ii Contents...........................................iii Introduction.......................................p.2 Definitions and main results.......................p.3 Properties of weights..............................p.6 Proofs of Theorems.................................p.10 References.........................................p.22

    1 E. Adams, On weighted norm inequalities for the Riesz transforms of functions with vanishing moments,
    Studia Math. 78, (1984), 107-153.
    2 J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math., vol. 29, Amer. Math. Soc., Providence, 2000.
    3 J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals,
    Trans. Amer. Math. Soc. 336, (1993), 869-880.
    4 Y. Ding, D. Fan, and Y. Pan, Weighted boundedness for a class of rough Marcinkiewicz integral,
    Indiana Univ. Math. J. 48, (1999), 1037-1055.
    5 Y. Ding and C.-C. Lin, boundedness of some rough operators with different weights,
    J. Math. Soc. Japan, 55, (2003), 209-230.
    6 J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland, 1985.
    7 C. Neugebauer, Inserting -weights, Proc. Amer. Math. Soc. 87, (1983), 644-648.
    8 Y. Rakotondratsimba, Two weight norm inequality for Calderon-Zygmund operators, Acta Math. Hungar. 80,
    (1998), 39-54.
    9 A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.
    10 A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Coll. Math. 61-62, (1990), 235-243.
    11 D. Watson, Weighted estimates for singular integrals via Fourier transform eatimates, Duke. Math. J. 60, (1990),
    389-399.

    QR CODE
    :::