| 研究生: |
洪建程 Chien-Cheng Hung |
|---|---|
| 論文名稱: |
臺灣花蓮和平花崗片麻岩之摩擦特性及其隱示 Frictional Properties of Hualien Hoping Granitic Gneiss, Taiwan, and Its Implication |
| 指導教授: |
郭力維
Li-Wei Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 岩石摩擦試驗 、假玄武玻璃 、同步輻射 、粒徑分析 、熱破裂 |
| 外文關鍵詞: | Rock friction experiment, Pseudotachylyte, Synchrotron, Particle size analysis, Thermal cracking |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
斷層作用產生的假玄武玻璃是一個在大地震發生期間,圍岩因摩
擦加熱所形成的凝固熔融體,其可提供地震相關的物理參數而成為知
名的地震指示劑。一條蘊含假玄武玻璃之斷層被發現於臺灣東北的花
蓮和平地區且夾雜於大南澳花崗片麻岩之中。為了研究和平假玄武玻
璃對動態摩擦行為之影響及其相關機制,本研究利用和平鑽井的花崗
片麻岩的岩芯來進行高速岩石摩擦旋剪試驗。所有由低到高正向應力
(3 至30 MPa)的試驗數據皆顯示類似的摩擦行為趨勢,從初始滑移時
皆上升至一摩擦峰值μp (約0.6 至1.0),而後隨著滑動距離的增加再
降至一穩態值μss (約0.3 至0.45)。顯著的是,在低正向應力(3 至9
MPa)的情況下,本研究發現在摩擦峰值後還有一摩擦緩坡之出現。掃
描式電子顯微鏡搭配能量色散X 光能譜分析儀和同步X 光繞射儀的
結果顯示階段性滑移摩擦試驗產生之熔融體皆有化學成分上之差異。
特別的是,穿透式X 光顯像儀分析之結果顯示各階段熔融帶中存在
的細小石英顆粒在數量上也有不同。這結果可能說明在Gibbs-
Thomson 效應的影響下,熔融體中若有額外磨細作用及熱破裂之細顆
粒產物,會導致其黏滯度高於含有較少細顆粒之熔融體。本研究推測
這些伴隨在摩擦熔融中因熱力學作用所產生的細小粒狀材料,會造成
高黏滯度之熔融體,似乎會抑制斷層在地殼非常淺部之滑移,或是阻
礙地震在地表淺部初始破裂之滑動,即使熔融弱化在後續產生。
Fault-origin pseudotachylyte is a solidified melt produced by frictional heating during big earthquakes. It is well-known as a seismic indicator which can provide information on earthquake physics. A new locality of pseudotachylyte-bearing fault, hosted in the Tananao granitic gneiss, was discovered in the Hoping area of northeast Taiwan. To investigate the plausible dynamic frictional behavior of the Hoping pseudotachylyte, we perform rock friction experiments on granitic gneiss
cores collected from the borehole in the Hoping area. All the mechanical data show similar frictional trends that the shear stress initially increases up to a peak value of ~0.6-1.0 (peak friction) and decreased with displacement to a steady state of ~0.3-0.45 from low to high normal stresses (3 to 30 MPa). It is notable that, at low normal stresses of 3 MPa, a transient increase of shear stress (friction bump) appears after peak friction. The micro-analytical results of the slip-stepping experimental products including in situ synchrotron XRD and FESEM-EDX show chemical and compositional variation in the matrix of melts. In particular, Transmission X-ray Microscope (TXM) on the matrix of melts shows the varied abundance of remain quartz grains in the melt layer. It suggests that melts with additive comminuted or thermal-cracking products result in higher viscosity than the one with less-abundant-relic melting, plausibly due to Gibbs-Thomson effect. We surmise that thermo-mechanical
generated granular materials associated with frictional melting, resulting in high viscous melts, seem to terminate seismic slip at very shallow crust, or may hamper seismic slip in the initial earthquake propagation at shallow depth, even melt lubrication was operated afterword.
1. Angelier, J., Geodynamics of the Eurasian-Philippine Sea Plate Boundary. Special Issue, Tectonophysics, 125, IX–X., 1986.
2. Bartels, S.A., VanRooyen, M.J., Medical complications associated with earthquakes. Lancet. 2011.
3. Boullier, A.M., Ohtani, T., Fujimoto, K., Ito, H., Dubois, M., Fluid inclusions in pseudotachylytes from the Nojima fault, Japan. J. Geophys. Res., 106, 21965–21977., 2001.
4. Brantut N., Schubnel A., Rouzaud J.N., Brunet F., Shimamoto T., High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics: J. Geophys. Res., 113, B10401, 2008.
5. Byerlee, J. D., Friction of rocks. Pure Appl. Geophys., 116, 615–26, 1978.
6. Chen P.-Y., Table of key lines in X-ray powder diffraction patterns of minerals in clays and associated rocks. Indiana Geological Survey Occasional Paper 21, Indiana Department of Natural Resources, Bloomington, IN, 67pp., 1977.
7. Chi W.-R., Namson J., Suppe J., Stratigraphic record of the plate interactions of the Coastal Range of eastern Taiwan. Memoir Geological Society of China, 4, 155–194., 1981.
8. Chu H.-T., Hwang S.-L., Shen P., and Yui T.-F., Pseudotachylyte in the Tananao Metamorphic Complex, Taiwan: Occurrence and dynamic phase changes of fossil earthquakes: Tectonophysics, 581, 62–75, 2012.
9. Dieterich, J. H., and B. D. Kilgore, Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic, Tectonophysics, 256, 219–239., 1996.
10. Di Toro, G., Pennacchioni, G., Teza, G., Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults. Tectonophysics 402, 3–20., 2005.
11. Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., Shimamoto, T., Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311, 647–649., 2006a.
12. Di Toro, G., Hirose, T., Nielsen, S., Shimamoto, T., Relating high-velocity rock friction experiments to coseismic slip. In: Abercrombie, R., McGarr, A., Di Toro, G., Kanamori, H. (Eds.), Earthquakes: Radiated Energy and the Physics of Faulting, 170. American Geophysical Union, Washington D.C, 121–134., 2006b.
13. Di Toro, G., Pennacchioni, G., Nielsen, S., Eiichi, F., Pseudotachylytes and earthquake source mechanics. In: Fukuyama, E. (Ed.), International Geophysics, 94. Academic Press, 87–133., 2009.
14. Di Toro, G., Niemeijer, A., Tripoli, A., Nielsen, S., Di Felice, F., Scarlato, P., Spada, G., Alessandroni, R., Romeo, G., Di Stefano, G., Smith, S., Spagnuolo, E., Mariano, S., From field geology to earthquake simulation: a new state-of-the-art tool to investigate rock friction during the seismic cycle (SHIVA). Rendiconti Lincei, 1–20., 2010.
15. Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., Fault lubrication during earthquakes. Nature 471, 494–498. 2011.
16. Fluegel, A., “Glass viscosity calculation based on a global statistical modelling approach,” Glass Technology, 48, no. 1, 13–30, 2004.
17. Ferre, E.C., E.-C. Yeh, Y.-M. Chou, R.-L. Kuo, H.-T. Chu, Korren, C.S., Brushlines in fault pseudotachylytes: a new criterion for coseismic slip direction. Geology 44 (5), 395–398., 2016.
18. Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc., 8 (6), 339–55., 1925
19. Goldsby, D.L., Tullis, T.E., Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science 334, 216–218., 2011.
20. Griffith, W.A., Mitchell, T.M., Renner, J., and Di Toro, G., Coseismic damage and softening of fault rocks at seismogenic depths: Earth and Planetary Science Letters, 353–354, 219–230, 2012.
21. Han, R., Shimamoto, T., Hirose, T., Ree, J.-H., Ando, J.-i., Ultralow friction of carbonate faults caused by thermal decomposition. Science 316 (5826), 878–881., 2007a
22. Han, R., Hirose, T., Shimamoto, T., Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. J. Geophys. Res, 115 (B03412). 2010.
23. Heaton, T.H., Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors 64 (1), 1–20., 1990.
24. Hirose, T., Shimamoto, T., Fractal dimension ofmolten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes. J. Struct. Geol. 25 (10), 1569–1574., 2003.
25. Ho, C.S., An introduction to the geology of Taiwan: Explanatory text of the Geologic Map of Taiwan. Ministry of Economic Affairs, Taiwan. 163 1986.
26. Kitano, T., Kataoka, T., Shirota, T., An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheol. Acta. 20, 207–209., 1981.
27. Kirkpatrick, J.D., Rowe, C.D., Disappearing ink: how pseudotachylytes are lost from the rock record. J. Struct. Geol. 52, 183–198., 2013.
28. Korren, C.S., Ferré, E.C., Yeh, E.-C., Chou, Y.-M., Chu, H.-T., Seismic rupture parameters deduced from a Pliocene fault pseudotachylyte in Taiwan, in Thomas, M.Y., et al., eds., Evolution of fault zone properties and dynamic processes during seismic rupture: American Geophysical Union Geophysical Monography., 2016.
29. Kuo, L.-W., Li H., Smith, S.A., Di Toro, G., Suppe J., Song, S.-R., Nielsen, S., Sheu, H.-S., Si, J., Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 42 (1), 47–50., 2014.
30. Kuo, L.-W., Song, Y.-F., Yang, C.-M., Song S.-R., Wang, C.-C., Dong, J.-J., Suppe, J., and Shimamoto, T., Ultrafine spherical quartz formation during seismic fault slip: Natural and experimental evidence and its implications, Tectonophysics, 664, 98–108., 2015.
31. Lan, C.-Y., Geochronology and rock chemistry of Taiwan gneisses: Ph. D. thesis, National Taiwan University, 211p (in Chinese). 1989.
32. Lavallée, Y., Mitchell, T.M., Heap, M.J., Vasseur, J., Hess, K.-U., Hirose, T., Dingwell, D.B., Experimental generation of volcanic pseudotachylyte: constraining rheology. J. Struct. Geol., 38, 222–233., 2012.
33. Lejeune, A.M., Bottinga, Y., Trull, T.W., Richet, P., Rheology of bubble-bearing magmas, Earth Planet. Sci. Lett. 166, 71–84., 1999.
34. Lin, A., Fossil Earthquakes: The Formation and Preservation of Pseudotachylytes. Springer, 2008.
35. Lin, A., Shimamoto, T., Selective melting processes as inferred from experimentally generated pseudotachylytes. J. Asian Earth Sci., 16, 533–545., 1998.
36. Nagahama, H., Shimamoto, T., Lin, A., Sato, H., Tsutsumi, A., Ohtomo, Y., Shigematsu, N., Watanabe, T., Further analysis of clast-size distribution in pseudotachylytes: implication for their origin (Abstract). 29th International Geological Congress, 1/3, 169, 1992.
37. Nielsen, S., Di Toro, G., Griffith, W.A., Friction and roughness of a melting rock interface. Geophysical Journal International 182 (1), 299–310. 2010.
38. Niemeijer, A., Di Toro, G., Nielsen, S., Di Felice, F., Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration and sliding velocity. J. Geophys. Res., 116, 2011.
39. Niemeijer, A., Di Toro, G., Griffith, W.A., Bistacchi, A., Smith, S.A.F., Nielsen, S., Inferring earthquake physics and chemistry using an integrated field and laboratory approach. J. Struct. Geol., 39, 2–36., 2012.
40. Okamoto, Y., Kitamura, M., A mineralogical study of pseudotachylytes from Scotland (Abstract). Annual Meeting of Mineralogical Society of Japan, 47 (in Japanese). 1990.
41. Rempel, A.W., Weaver, S.L., A model for flash weakening by asperity melting during high-speed earthquake slip. J. Geophys. Res., 113, 2008.
42. Rice, J.R., Flash heating at asperity contacts and rate-dependent friction. EOS, Transactions, American Geophysical Union 80 (46), F681. Fall Meet. Suppl., 1999.
43. Rice, J.R., Heating and weakening of faults during earthquake slip. J. Geophys. Res, 111. 2006.
44. Scholz, C. H., The mechanics of earthquakes and faulting: Cambridge, Cambridge University Press, 439, 1990.
45. Shimamoto, T., Nagahama, H., An argument against the crush origin of pseudotachylytes based on the analysis of clast-size distri- bution. Journal of Structural Geology 14, 999±1006, 1992.
46. Shimamoto, T., Tsutsumi, A., A new rotary-shear high-speed friction testing machine its basic design and scope of research. Journal of the Tectonic Research Group of Japan 39, 65–78 (in Japanese with English abstract). 1994.
47. Sibson, R. H., Generation of pseudotachylite by ancient seismic faulting. Geophys J R Astro. Soc. 43:775–94. 1975.
48. Sibson, R. H., Fault rocks and fault mechanisms: Geological Society of London Journal, 133, 191–231, 1977.
49. Song, S.-R., Kuo, L.-W., Yeh, E.-C., Wang, C.-Y., Hung, J.-H., Ma, K.-F., Characteristics of the lithology, fault-related rocks and fault zone structures in the TCDP Hole-A. Terr. Atmos. Ocean. Sci. 18, 243–269, 2007a.
50. Song, Y.-F., et al., X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter. J. Synchrotron Radiat. 14, 320–325, 2007b.
51. Spray, J.G., Viscosity determinations of some frictionally generated silicate melts: Implications for fault zone rheology at high strain rates. J. Geophys. Res. 98, 8053–8068, 1993.
52. Swanson, M. T., Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation, Tectonophys, 204, 223-242., 1992.
53. Tammann, G. & Hesse, W. Die abhängigkeit der viskosität von der temperatur bei unterkühlten flüssigkeiten (Dependence of the viscosity from the temperature in undercooled liquids). Zeitschrift für Anorganische und Allgemeine Chemie, 156, 245–57, 1926.
54. Ujiie, K., Tsutsumi, A., Fialko, Y., Yamaguchi, H., Experimental investigation of frictional melting of argillite at slip rates: implication for seismic slip in subduction–accretion complexes. J. Geophys. Res. 114, 2009.
55. Vogel, H., Temperatura bhängigkeitsgesetz der Viskosität von Flüssigkeiten (Law of Temperature Dependence of Liquids). Phys. Zeitschrift, 22, 645–6. (In German.). 1921.
56. Wang, P. L., Lin, L. H., Lo, C.H., 40Ar/39Ar dating of mylonitization in the Tananao schist, eastern Taiwan. Journal of the Geological Society of China, 41, 159–183., 1998.
57. Wu, Y.-M., Chang, C.-H., Zhao, L., Hsu, Y.-J., Focal mechanism determination in Taiwan by genetic algorithm. Bull. Seism. Soc. Am., 98, 651–661., 2008a.
58. Yin, G.-C., Song, Y.-F., Tang, M.-T., Chen, F.-R., Liang, K.S., Duewer, F.W., Feser, M., Yun,W., Shieh, H.-P.D., 30 nm resolution X-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope. Appl. Phys. Lett. 89, 2006.
59. Yen, T.-P., Some geological problems on the Tananao Schist. Bull. Geol. Surv. Taiwan, 7, 47–50, 1954a.
60. Yen, T.-P., The metamorphic belts within the Tananao schist terrain of Taiwan. Proc. Geol. Soc. China, 6, 72–74, 1963.
61. Yui, T.-F., Okamoto, K., Usuki, T., Lan, C.Y., Chu, H.T., Liou, J.G., Late Triassic-Late Cretaceous accretion/subduction in Taiwan region along the east margin of South China – evidence from zircon SHRIMP dating. International Geology Review 51, 304–328, 2009.
62. 余威論,「速度-位移相關摩擦係數與巨型山崩運動特性」,國立中央大學應用地質所,碩士論文,2009。
63. 林朝彥,「花蓮和平溪下游變質花崗岩之脆韌性構造與脆性構造研究」,國立臺灣師範大學,碩士論文,2015。
64. 陳文山,台灣地質概論,中華民國地質學會,2016。