跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾佳得
Jia De Tseng
論文名稱: 使用高溶解性的共沸溶劑通過 冷卻再結晶純化薑黃素
Purification of Curcumin by Cooling Crystallization in Azeotropes of High Solvent Power
指導教授: 李度
Tu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 105
中文關鍵詞: 薑黃素
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業製程會避免形成共沸組成的共溶劑,因其難以回收的特性,需要額外回收溶劑的製成而導致成本增加。本論文提出了共沸溶劑在回收的潛在優點,即在蒸發的製程後仍可保持共溶劑的組成。本篇主要之研究目的,是使用兩種共沸溶劑乙酸乙酯/乙醇(70/30重量百分濃度)與乙酸乙酯/異丙醇(75/25重量百分濃度),通過冷卻再結晶的方式提高薑黃素的純度,並使用丙酮、乙醇、異丙醇與乙酸乙酯作為對照組,以探討溶劑對薑黃素的再結晶純化的影響。共沸溶劑的優勢在於,可透過蒸發方式分離再結晶完過濾後的母液,並保持原本的共沸溶劑的組成,無須擔心溶劑組成會因為蒸發而改變。
    有關本篇的研究,由於薑黃素與類薑黃素具有相似的分子結構,導致薑黃素在溶劑中需要較長的時間結晶,為了要縮短製程時間以達到控制,將攪拌與加入晶種兩種參數加入實驗設計中。實驗一,粗薑黃素分別在六種溶劑中冷卻再結晶。實驗二,加入了攪拌。實驗三,加入了攪拌與晶種。透過液相層析儀分析冷卻再結晶的薑黃素晶體,和記錄溶劑的使用量與產物的重量,可以計算出薑黃素的純度、產物的產量與溶劑的容量。結論,六種溶劑都具有純化薑黃素的效果,都可以薑黃素的純度從71.8 wt%提升91-95 % wt%,再純度差異不大的前提下,透過產物的產量與溶劑的容量這兩個數值可以得出,乙酸乙酯/乙醇(70/30 wt%)的共沸組成在六種溶劑系統中,是最適合做為薑黃素的再結晶製程的溶劑,因為其良好的溶解度(28.8 mg/ml在25度C)可以減少溶劑的使用,也可以通過攪拌(300 rpm)和加入晶種這兩種參數有效地將薑黃素結晶的時間從三天縮短到一天,和將粗薑黃素經過一次再結晶將純度從71.8 wt% 提升至94.4 wt%。乙酸乙酯/乙醇的共沸溶劑也可通過蒸餾方法回收乙酸乙酯/乙醇的共沸溶劑,透過氣相層析儀分析溶劑組成為乙酸乙酯與乙醇70/30 wt%、溫度計測量溶劑沸點為71.8度C與密度計測量溶劑密度為0.860 mg/ml 確認共沸溶劑組成不會因蒸發而改變。


    Industrial processes avoid the formation of azeotropic solvent solutions, because azeotropes cannot be recovered to pure solvents by distillation. If it is inevitable, additional processes may be required to recover the solvent and increase the operational costs. The potential advantage of azeotropic solvents in the crystallization process, that is, the azeotrope can be recovered after crystallization process by evaporation without worrying about changes in the co-solvent composition was proposed. In this thesis, six solvent systems, including acetone (ACE), ethyl acetate (EA), ethanol (EtOH), 2-propanol (IPA), the azeotropic mixture of EA/EtOH =70/30 wt% (AZE-EA/EtOH), and the azeotropic mixture of EA/IPA=75/25 wt% (AZE-EA/IPA), were investigated to separate and purify curcumin (CUR) from its structurally related impurities of desmethoxycurcumin (DMC) and bisdesmethoxycurcumin (BDMC) by cooling crystallization. The purified CUR crystals were harvested by filtration and drying at 40°C and the purity was determined by high performance liquid chromatography (HPLC). Utilizing the uniqueness of azeotropes, including AZE-EA/EtOH and AZE-EA/IPA can be recovered by evaporating the filtrate, then the ones of individual solvent components at a lower boiling point of azeotrope. The recovered azeotrope was analyzed by gas chromatography, and the boiling point and density at 25°C were measured at 1 atm to ensure the composition of the co-solvent. In my research, AZE-EA/EtOH is the most suitable solvent for CUR purification because of its high solubility power (28.8 mg/ml at 25°C) and solvent capacity (15.7 mg/ml), which has the advantage for solvent saving, and having almost the same purity about 94 wt% as EA and EtOH used in the food industry. Overall, the raw CUR of 71.8 wt% was purified to 94.4 wt% in AZE-EA/EtOH by one-step cooling crystallization, crystallization time was 1 day, and inoculation at 50°C and 300 rpm.

    摘要 i Abstract iii Chapter 1 Introduction 1 1.1 Brief Introduction of Curcumin: 1 1.1.1 Turmeric 1 1.1.2 Chemical Composition of Turmeric 1 1.1.3 Efficacy of Curcumin 2 1.2 Curcumin Extraction from Turmeric 4 1.2.1 Manufacturing Process of Curcumin Health Food BCM-95® 4 1.2.2 Curcumin Extraction with Solvents 5 1.2.3 Curcumin Extraction with Supercritical Fluid 8 1.3 Purification of Curcumin 9 1.3.1 Chromatography 9 1.3.2 Crystallization 10 1.4 Conceptual Framework 14 Chapter 2 15 2.1 Materials 15 2.1.1 Chemicals 15 2.1.2 Solvents 15 2.2 Experimental Methods 17 2.2.1 Solubility Test of Raw Curcumin 17 2.2.2 The Effect of Solvent, Stirring and Crystallization Time on Curcumin Purification 18 2.2.2.1 Experimental setups 18 2.2.2.2 Experiment 1: Crystallization Time of 3-6 Days without any Stirring and Seeding 19 2.2.2.3 Experiment 2: Crystallization Time of 1-3 Days with Stirring at 300 rpm and No Seeding 19 2.2.2.4 Experiment 3: Crystallization Time of 1 Day with Stirring at 300 rpm and Seeding 20 2.2.2.5 Curcumin Seed Preparation 20 2.2.2.6 Experiment 4: Large Scale Cooling Crystallization 21 2.2.3 Recycling of Azeotropic Mixtures by Simple Distillation 22 2.2.4 Boiling Point and Density Test 24 2.2.5 Phase Diagram 25 2.3 Analytical Measurements 26 2.3.1 Fourier Transform Infrared (FTIR) Spectroscopy 26 2.3.2 Powder X-Ray Diffraction (PXRD) 26 2.3.3 Optical Microscopy (OM) 26 2.3.4 High Performance Liquid Chromatography (HPLC) 27 2.3.5 Gas Chromatography (GC) 28 2.3.6 Differential Scanning Calorimetry (DSC) 28 Chapter 3 29 3.1 Raw CUR Powder Use Test 29 3.2 Solubility Test 34 3.3 Effects of Solvent, Stirring, Seeding and Crystallization Time on Curcumin Purification 39 3.4 Large Scale of Curcumin Purification in AZE- EA/EtOH System 61 3.5 Recycling AZE-EA/EtOH by simple distillation 67 3.6 Phase Diagram of CUR-EA-EtOH 71 Chapter 4 Conclusion and Future Work 76 4.1 Conclusion 76 4.2 Future Work 77

    Rathaur, P.; Raja, W.; Ramteke, P.W.; John, S. A. Turmeric: The Golden Sice of Life. Int. J. Pharm. Sci. Technol. 2012, 3(7), 1987-1994.
    Tohda, C.; Nakayama, N.; Hatanaka, F.; Komatsu, K. Comparison of Anti-inflammatory Activities of Six Curcuma Rhizomes: A Possible Curcuminoid-independent Pathway Mediated by Curcuma phaeocaulis Extract. Evid. Based Complementary Altern. Med. 2006, 3(2), 255–260.
    Tayyem, R. F.; Heath, D. D.; Al-Delaimy, W. K.; Rock, C. L. Curcumin Content of Turmeric and Curry Powders. Nutr Cancer. 2006, 55(2), 126–131.
    Sharma, R.A.; Gescher, A.J.; Steward, W.P.; Curcumin: the Story so Far. Eur J Cancer 41, 2005, 1955-1968.
    Albert, O. Turmeric (curcumin) in Biliary Disease. Lancet. 1937, 229 (5924), 619-621.
    Katanasaka, Y.; Sunagawa, Y.; Hasegawa, K.; Morimoto, T. Application of Curcumin to Heart Failure Therapy by Targeting Transcriptional Pathway in Cardiomyocytes. Biol. Pharm. Bull. 2013, 36 (1), 13–17.
    Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care. 2012, 35 (11), 2121-7.
    Ghosh, S. S.; Gehr, T.; Ghosh, S. Curcumin and Chronic Kidney Disease (CKD): Major Mode of Action through Stimulating Endogenous Intestinal Alkaline Phosphatase. Molecules. 2013, 19 (12), 20139–20156.
    Bradford, P. G. Curcumin and Obesity. BioFactors. 2013, 39 (1), 78–87.
    Chem, Z.; Xue, J.; Shen, T.; Mu, S.; Fu, Q. Curcumin Alleviates Glucocorticoid-Induced Osteoporosis Through the Regulation of the Wnt Signaling Pathway. Int. J. Mol. Med. 2016, 37 (2), 329–338.
    Baum, L.; Lam, C. W. K.; Cheung, S. K. et al. Six-Month Randomized, Placebo-Controlled, Double-Blind, Pilot Clinical Trial of Curcumin in Patients with Alzheimer Disease.
    J. Clin. Psychopharmacol. 2008, 28 (1), 110-113.
    Di, N. V.; Gianfaldoni, S.; Tchernev, G. et al. Use of Curcumin in Psoriasis. J. Med. Sci. 2017, 6 (1), 218-220.
    Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4 (6), 807-818.
    Bhawana,; Basniwal, R. K.; Buttar, H. S.; Jain, V. K.; Jain, N. Curcumin Nanoparticles: Preparation, Characterization, and Antimicrobial Study. J. Agric. Food. Chem. 2011, 59 (5), 2056-2061.
    Liu, J.; Svärd, M.; Hippen, P.; Rasmuson, Å. C. Solubility and Crystal Nucleation in Organic Solvents of Two Polymorphs of Curcumin. Journal of Pharmaceutical Sciences. 104(7), 2183–2189.
    Sanphui, P.; Goud, N. R.; Khandavilli, U. B. R.; Nangia, A. Fast Dissolving Curcumin Cocrystals. Cryst. Growth Des. 2011, 11 (9), 4135–4145.
    Li, B.; Konecke, S.; Wegiel, L. A.; Taylor, L. S.; Edgar, K. J. Both Solubility and Chemical Stability of Curcumin are Enhanced by Solid Dispersion in Cellulose Derivative Matrices. Carbohydrate Polymers. 2013, 98 (1), 1108–1116.
    Volak, L.P.; Hanley, M.J.; Masse, G.; Hazarika, S.; Harmatz, J.S.; Badmaev, V.; Majeed, M.; Greenblatt, D.J.; Court, M.H. Effect of a Herbal Extract Containing Curcumin and Piperine on Midazolam, Flurbiprofen and Paracetamol (Acetaminophen) Pharmacokinetics in Healthy Volunteers. Br. J. Clin. Pharmacol. 2013, 75(2), 450–462.
    Cuomo, J.; Appendino, G.; Dern, A.S.; Schneider, E.; McKinnon, T.P.; Brown, M.J.; Togni, S.; Dixon, B.M. Comparative Absorption of a Standardized Curcuminoid Mixture and its Lecithin Formulation. J. Nat. Prod. 2011, 74(4), 664–669.
    Sasaki, H.; Sunagawa, Y.; Takahashi, K.; Imaizumi, A.; Fukuda, H.; Hashimoto, T.; Wada, H.; Katanasaka, Y.; Kakeya, H.; Fujita, M.; et al. Innovative Preparation of Curcumin for Improved Oral Bioavailability. Biol. Pharm. Bull. 2011, 34(5), 660–665.
    Gota, V.S.; Maru, G.B.; Soni, T.G.; Gandhi, T.R.; Kochar, N.; Agarwal, M.G. Safety and Pharmacokinetics of a Solid Lipid Curcumin Particle Formulation in Osteosarcoma Patients and Healthy Volunteers. J. Agric. Food Chem. 2010, 58(4), 2095–2099.
    Franz, K.; Frank, J.; Senft, C.; Schiborr, C.; Pilatus, U.; Geßler, F.; Weissenberger, J.; Quick-Weller, J.; Dützmann, S.; Kocher, A.; et al. Intratumoral Concentrations and Effects of Orally Administered Micellar Curcuminoids in Glioblastoma Patients. Nutr. Cancer. 2016, 68(6), 943–948.
    Curcumin; SDS No. 458-37-7; DolCas Biotech: Landing, NJ, October 21, 2016.
    Popuri, A. K.; Pagala, B. Extraction of Curcumin from Turmeric Roots. Int. J. Innovative. Res. Stud. 2013, 2(5). 290–299.
    Anusree, R.; Prosenjit, M.; Tausif, A. Curcumin Extraction: Best Solvent on The Basis of Spectrophotometric Analsis. Univers. J. Pharm. Sci. Res. 2015, 4(2), 48–52.
    Priyanka,; Khanam, S. Influence of Operating Parameters on Supercritical Fluid Extraction of Essential Oil from Turmeric Root. J. Clean. Prod. 2018, 188, 816–824.
    Anderson, A. M.; Mitchell, M. S.; Mohan, R. S. Isolation of Curcumin from Turmeric. J. Chem. Educ. 2000, 77(3), 359.
    Sogi, D. S.; Sharma, S.; Oberoi, D. P. S.; Wani, I. A. Effect of Extraction Parameters on Curcumin Yield from Turmeric. J. Food Sci. Technol. 2010, 47(3), 300–304.
    Bagchi, A. Extraction of Curcumin, J Environ Sci (China). 2012, 1(3), 1–16.
    Pawar, H. A.; Gavasane, A. J.; Choudhary, P. D. A Novel and Simple Approach for Extraction and Isolation of Curcuminoids from Turmeric Rhizomes. Adv. Recycl. Waste Manage. 2018, 06(01), 1–4.
    Yadav, D. K.; Sharma, K.; Dutta, A.; Kundu, A.; Awasthi, A.; Goon, A.; Banerjee, K.; Saha, S. Purity Evaluation of Curcuminoids in the Turmeric Extract Obtained by Accelerated Solvent Extraction. J AOAC Int. 2017, 100(3), 586–591.
    Brunner, G. Gas Extraction: An Introduction to Fundamentals of Supercritical Fluids and the Applications to Separation Processes; Steinkopff: Darmstadt, Germany, 1994.
    Ferreira, S. R. S.; Nikolov, Z.; Doraiswamy, L. K.; Meireles, M. A. A.; Petenate, A. J. Supercritical Fluid Extraction of Black Pepper (Piper nigrun L.) Essential Oil. J. Supercrit. Fluids. 1999, 14(3), 235–245.
    Gopalan, B.; Goto, M.; Kodama, A.; Hirose, T. Supercritical Carbon Dioxide Extraction of Turmeric (Curcuma longa). J. Agric. Food Chem. 2000, 48(6), 2189–2192.
    Chassagnez-Méndez, A. L.; Machado, N. T.; Araujo, M. E.; Maia, J. G.; Meireles, M. A. A. Supercritical CO2 Extraction of Curcumins and Essential Oil from the Rhizomes of Turmeric (Curcuma longaL.). Ind. Eng. Chem. Res. 2000, 39(12), 4729–4733.
    Anderson, A. M.; Mitchell, M. S.; Mohan, R. S. Isolation of Curcumin from Turmeric. J. Chem. Educ. 2000, 77(3), 359–360.
    Heffernan, C.; Ukrainczyk, M.; Gamidi, R. K.; Hodnett, B. K.; Rasmuson, Å. C. Extraction and Purification of Curcuminoids from Crude Curcumin by a Combination of Crystallization and Chromatography. Org. Process Res. Dev. 2017, 21(6), 821–826.
    Inoue, K.; Nomura, C.; Ito, S.; Nagatsu, A.; Hino, T.; Oka, H. Purification of Curcumin, Demethoxycurcumin, and Bisdemethoxycurcumin by High-Speed Countercurrent Chromatography. J. Agric. Food Chem. 2008, 56(20), 9328–9336.
    Fiebig, A.; Jones, M. J.; Ulrich, J. Predicting the Effect of Impurity Adsorption on Crystal Morphology. Cryst. Growth Des. 2007, 7(9), 1623–1627.
    Salvalaglio, M.; Vetter, T.; Giberti, F.; Mazzotti, M.; Parrinello, M. Uncovering Molecular Details of Urea Crystal Growth in the Presence of Additives. J. Am. Chem. Soc. 2012, 134(41), 17221–17233.
    Heffernan, C.; Ukrainczyk, M.; Zeglinski, J.; Hodnett, B. K.; Rasmuson, Å. C. Influence of Structurally Related Impurities on the Crystal Nucleation of Curcumin. Cryst. Growth Des. 2018, 18(8), 4715–4723.
    Venkatakrishnan, K.; Chiu, H.-F.; Wang, C.-K. Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism. J. Funct. Foods. 2019, 57, 425–438.
    Chai, Y.; Wang, L.; Bao, Y.; Teng, R.; Liu, Y.; Xie, C. Investigating the Solvent Effect on Crystal Nucleation of Etoricoxib. Cryst. Growth Des. 2019, 19(3), 1660−1667.
    Liu, Y.; Yu, T.; Lai, W.; Ma, Y.; Cao, Y.; Liu, N.; Ge, Z.; Zhao, F. Deciphering Solvent Effect on Crystal Growth of Energetic Materials for Accurate Morphology Prediction. Cryst. Growth Des. 2020, 20(2), 521–524.
    Zhang, Y.; Doherty, M. F. Simultaneous Prediction of Crystal Shape and Size for Solution Crystallization. AIChE J. 2004, 50(9), 2101–2112.
    Horosanskaia, E.; Yuan, L.; Seidel-Morgenstern, A.; Lorenz, H. Purification of Curcumin from Ternary Extract-Similar Mixtures of Curcuminoids in a Single Crystallization Step. Crystals. 2020, 10(3), 1–16.
    Khoshkhoo, S.; Anwar, J. Crystallization of polymorphs: the effect of solvent. J. Phys. D. 1993, 26(8B), B90–B93.
    John, M.; Nima, Y.; Chris, P.; Joop, H.; Jan, S. Nucleation and Crystal Growth in Continuous Crystallization. The Handbook of Continuous Crystallization; Royal Society of Chemistry: London, UK. 2020.
    Ukrainczyk, M.; Hodnett, B. K.; Rasmuson, Å. C. Process Parameters in the Purification of Curcumin by Cooling Crystallization. Org Process Res Dev. 2016, 20(9), 1593–1602.
    Forsyth, C.; Mulheran, P. A.; Forsyth, C.; Haw, M. D.; Burns, I. S.; Sefcik, J. Influence of Controlled Fluid Shear on Nucleation Rates in Glycine Aqueous Solutions, Cryst. Growth Des. 2015, 15(1), 94–102.
    Forsyth, C.; Burns, I. S.; Mulheran, P. A.; Sefcik, J. Scaling of Glycine Nucleation Kinetics with Shear Rate and Glass–Liquid Interfacial Area. Cryst. Growth Des. 2016, 16(1), 136–144.
    Liu, J.; Svärd, M.; Hippen, P.; Rasmuson, Å. C. Solubility and Crystal Nucleation in Organic Solvents of Two Polymorphs of Curcumin. J Pharm Sci. 2015, 104(7), 2183–2189.
    McGinty, J.; Yazdanpanah, N.; Price, C.; Horst, J. H.; Sefcik, J. Chapter 1:Nucleation and Crystal Growth in Continuous Crystallization in The Handbook of Continuous Crystallization, 1st ed;2020, 1–50.
    Sanphui, P.; Goud, N. R.; Khandavilli, U. B. R.; Bhanoth, S.; Nangia, A. New Polymorphs of Curcumin. Chem. Commun. 2011, 47 (17), 5013–5015.
    Hildebrand, J. H. Solubility. J. Am. Chem. Soc. 1916, 38(8), 1452–1473.
    J. Mullin, Crystallization, 4th ed. Butterworth-Heinemann, Oxford, 2001; pp 206–210.
    Zheng, M.; Chen, J.; Xu, R.; Chen, G.; Cong, Y.; Zhao, H. Solubility and Preferential Solvation of 3-Nitrobenzonitrile in Binary Solvent Mixtures of Ethyl Acetate Plus (Methanol, Ethanol, n-Propanol, and Isopropyl Alcohol). J. Chem. Eng. Data. 2018, 63(6), 2290–2298.
    Noubigh, A. Stearic Acid Solubility in Mixed Solvents of (Water + Ethanol) and (Ethanol + Ethyl acetate): Experimental Data and Comparison Among Different Thermodynamic models. J. Mol. Liq. 2019, 296, 112101.
    Li, W.; Farajtabar, A.; Xing, R.; Zhu, Y.; Zhao, H.; Lv, R. 3-Methyl-6-nitroindazole in Some Aqueous Co-solvent Mixtures: Solubility Determination, Preferential Solvation and Solvent Effect Analysis. J. Chem. Thermodyn. 2020, 144, 106066.

    QR CODE
    :::