| 研究生: |
邱益增 Yi-zeng Ciou |
|---|---|
| 論文名稱: |
加勁土堤受震反應之離心模型試驗 Centrifuge modeling on seismic behavior of reinforced earth embedment |
| 指導教授: |
黃俊鴻
Jin-Hung Hwang 李崇正 Chung-Jung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 顯著頻率 、振動台試驗 、加勁土堤離心 |
| 外文關鍵詞: | centrifuge shaking table test, predominant frequency, reinforced earth embedment |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
加勁擋土結構在1980年代後期引進台灣,自此加勁材料及各式加勁結構蓬勃發展。台灣屬於地震頻繁地區,結構物設計須考慮地震作用下之安全性,若要將耐震性能設計觀念應用於土堤耐震設計,則有必要掌握土堤結構在不同等級地震作用下之變形性,以及影響其動態行為的相關參數。
本研究利用離心模型試驗研究加勁土堤動態反應,改變不同加勁材強度、加勁材長度及加勁間距,變化土堤坡度及高度,探討不同幾何條件與加勁材料配置下,在不同強度振動力作用下,加勁土堤加速度與變形性之差異。
研究結果顯示:(1)模擬現地4m高的加勁土堤試驗結果顯示土堤顯著頻率在10Hz左右,8m高的加勁土堤試驗中,土堤顯著頻率約在5.7Hz,改變加勁間距、加勁長度及土堤坡度對土堤顯著頻率影響不大。模擬現地12m高加勁土堤的試驗顯著頻率為4.5Hz,顯示加勁土堤顯著頻率與高度有明確的相關性。(2)少數1Hz振動事件中的加速度變化會呈現縮小反應,縮小反應與土堤大量變形有關。(3)8m高的加勁土堤試驗中,加勁材強度112kN/m及62.5kN/m的試驗結果顯示加勁土堤耐震性能均十分良好。(4)由8m高加勁土堤內部斷裂破壞連線可知,斷裂位置與坡面水平距離最遠的加勁材大多位於土堤頂部,破壞面類似圓弧破壞。(5)由試驗後破壞土堤回收的加勁材可知,土堤底部往上約0.2~.03H的加勁材伸長量最大。
A series of centrifuge model tests was conducted to simulate the dynamic response of reinforced earth embedment. The variables considered in the centrifuge testing program were the reinforcement tensile strength, reinforcement spacing, reinforcement length, embedment height, and slope inclination. The main objectives were to investigate reinforced earth embedment in different reinforced type, and geometry.
According to model test results, the following conclusions are made:
(1) For a 4m-high embedment, the predominant frequency is about 10Hz, for an 8m-high embedment, the predominant frequency is about 5.7Hz, and for a 12m-high embedment, the predominant frequency is about 4.5Hz, which means predominant frequency had a significant association with the height of embedment. (2)There are some acceleration attenuation phenomenon occurs at 1Hz event and related to the significant movement of the embedment. (3)For all 8m-high embedment, model conducted with the reinforcement tensile strength 112kN/m and 62.5kN/m performed very well under seismic loading.
(4) According to the rupture point of reinforcement we can draw a failure surface, the failure surface it similar to a circular failure surface.
參考文獻
1.Abramson, L.W., Lee, T.S., Sharma, S., and Boyce, G.M., Slope Stability and Stabilization Methods, Wiley-Interscience, New York(1996).
2.Anderson, E.A., “A Centrifuge Modeling Study of Seimic Response of geosynthetic
-reinforced Slopes,” Master of Science Thesis, University of Washington, (1997).
3.ASTM D4595-86, Test method for tensile properties of geotextiles by the wide-width
strip method, American society for testing and materials, Philadelphia, PA, USA
4.Bergado, D.T., Chai J.C., and Balasubramanism A.S., “Interaction between grid reinforcement and cohesive-frictional soil,” Proceedings of the International Symposium on Earth Reinforcement Practice, Kyushu University, Fukuoka, Japan, pp.29-34 (1992).
5.Bonaparte, R., Holtz, R.D., and Giroud J.P., “Soil Reinforcement Design Using Geotextiles and Geogrids,” Geotextile Testing and the Design Engineer, ASTM STP 952, J. E. Fluet , Jr., Ed.,American Society for Testing and Materials, Philadelphia, pp.69-116 (1987).
6.Das, B.M., Principles of Geotechnical Engineering, Bill Stenquist, Pacific Grove (2002).
7.Hu, Y., Zhang, G., Zhang, J., and Lee, C.F., “Centrifuge modeling of geotextile-reinforced cohesive slopes,” Geotextiles and geomembranes, Vol. 28, No.1, pp.12-22 (2010).
8.Liu, H., Wang, X., and Song, E., “Reinforcement load and deformation mode of geosynthetic-reinforced soil walls subject to seismic loading during service life,” Geotextiles and geomembranes, Vol. 29, No.1, pp.1-16 (2011).
9.Victor, E., Barry, R.C., and Ryan, R.B., “Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines,” U.S., Department of Transportation Federal Highway Administration(FHWA), NHI Course, No. 132042, (2001).
10.Nova-Roessig, L., and Sitar, N., “Centrifuge model studies of the seismic response of reinforced soil slope,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 3, pp.388-400 (2006).
11.Taylor, R. N., Geotechnical Centrifuge Technology, Chapman & Hall, London, pp.27-42 (1995).
12.Viswanadham, B.V.S., and König, D., “Centrifuge modeling of geotextile-reinforced slopes subjected to differential settlements,” Geotextiles amd geomembranes, Vol. 27, No.2, pp.77-88 (2009).
13.Zornberg, J. G., and Arriaga, F., “Strain distribution within geosynthetic-reinforced slopes,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 1, pp.32-45 (2003).
14.Zornberg, J. G., Sitar, N., and Mitchell, J. K., “Performance of geosynthetic reinforced slopes at failure,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 8, pp.670-683 (1998a).
15.Zornberg, J. G., Sitar, N., and Mitchell, J. K., “Limit equilibrium as basis for design of geosynthetic-reinforced slopes,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 8, pp.684-698 (1998b).
16.王崇儒,「利用壓電彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
17.李崇正、林志棟、林俊雄,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669 頁 (1994)。
18.洪汶宜,「加勁擋土牆的斷裂破壞行為與內部穩定分析」,博士論文,國立中央大學土木工程學系,中壢 (2008)。
19.洪榮祥,「加勁邊坡動態行為之模擬分析」,碩士論文,國立成功大學土木工程學系,台南 (2007)。
20.陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢 (1999)。
21.陳建吾,「加勁擋土牆動態行為之模擬」,碩士論文,國立成功大學土木工程學系,台南 (2004)。
22.張晉彰,「加勁材配置方式對高含水量粘土加勁擋土牆穩定性之影響」,碩士論文,國立中央大學土木工程學系,中壢 (2005)。
23.顏呈仰,「地工格網於砂土圍壓下拉出行為研究」,碩士論文,私立中原大學土木工程學系,中壢 (1998)。
24.蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
25.鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,中壢(2010)。