| 研究生: |
羅莉涵 Maria Alejandra Del Rio Denis |
|---|---|
| 論文名稱: |
被動冷卻策略:用來降低巴拿馬市的未來住宅計畫耗能的方法 Passive cooling strategies as a method to reduce energy consumption of future dwelling projects in Panama City |
| 指導教授: |
吳俊諆
Jiunn-Chi Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 國際永續發展碩士在職專班 International Environment Sustainable Development Program |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 被動式冷卻 、熱舒適度 、自然通風 、熱帶氣候 、節能 |
| 外文關鍵詞: | Passive cooling, Thermal comfort, Natural ventilation, Tropical climate, Energy saving |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的目的是提出一個有效的方法,以降低位於熱帶氣候的巴拿馬市住宅中與熱舒適度相關能源消耗。本文有兩階段架構。首先,進行為期六個月的個案研究:在巴拿馬市一處現有的住宅內放置溫濕度記錄器,以記錄室內的變化。接下來,應用被動式冷卻策略來改善熱表現的概念設計一個住宅原型。本文採用Ecotect軟體進一步模擬出此原型:採用四種不同的自然通風技術來散熱,分別為不通風、全日通風、白天通風、夜晚通風。不論是現有的住宅或是本文提出的原型,都採用自然通風建築的兩套ASHRAE-55熱舒適度標準來評估,即是適應性舒適標準(ACS)與熱舒適度評估指標(PMV)作為熱舒適度量尺。研究結果顯示在此四種自然通風策略中,全日通風表現最佳,能達到最佳熱舒適度。本文主要的兩項發現分別為: (1)為達到最佳被動式冷卻,有必要結合增熱控制與熱散失兩項技術;(2)在未來的巴拿馬市住宅實行被動式冷卻策略,能降低能源消耗並達到熱舒適度。
This thesis aimed to propose an effective method to reduce energy consumption related to thermal comfort in residences located in the tropical climate of Panama City. A two-stage framework was adopted in this research. First, a case study was conducted during 6 months; where a humidity-temperature data logger was placed inside an existing house in Panama City to record its indoor conditions. Then, a prototype of house was designed with passive cooling strategies for improving thermal performance. This proposed prototype was further simulated using Ecotect software, where four different natural ventilation techniques for heat dissipation were adopted; namely, no ventilation, full ventilation, day ventilation and night ventilation. Both the existent house and the proposed prototype were evaluated using two ASHRAE-55 thermal comfort standards for naturally ventilated buildings, namely, adaptive comfort standard (ACS) and a predicted mean vote (PMV) regression to use thermal sensation scale. Results shown that among all of the natural ventilation strategies implemented, full ventilation showed the best performances as it was the one to achieve the best thermal comfort. The two major findings of the study are: (1) to fully achieve passive cooling it is necessary to combine heat gain control and heat dissipation techniques, and (2) the implementation of passive cooling strategies can reduce the energy consumption and achieve thermal comfort in future dwellings in Panama City.
ABRI, MOI, 2003. Evaluation manual for green building in Taiwan, Architecture and Building Research Institute, Ministry of the Interior, Taiwan.
ABRI, MOI, 2004. Introduction to green remodeling projects for governmental buildings, Architecture and Building Research Institute, Ministry of the Interior, Taiwan.
BMU, 2011. Climate protection and growth, Germany’s Path into the Renewable Energy Age, Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, October.
Brager G. S., de Dear R., 2000. A standard for natural ventilation. ASHRAE Journal
Bekkouche S. M. A., Benouaz T., Yaiche M. R., Cherier M. K., Hamdani M., Chellali F., 2011. Introduction to control of solar gain and internal temperature by thermal insulation, proper orientation and eaves, Energy and Buildings 43 : 2414-2421.
Cha H-Y., Riffat S. B., Zhu J., 2010. Review of passive solar heating and cooling technologies. Renewable and Sustainable Energy Reviews 14: 781-789.
De Dear R., Brager G.S., 2002. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings 34: 549-56.
Douglass C. D., 2010. Instructional modules demonstrating building energy analysis using a building information model, Master thesis, University of Illinois at Urbana-Champaign.
EERE, 2013. Department of energy (U.S.). Weather data. Accessed on October 29, 2013, http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm
General Electric, 2014. Power consumption of appliances. Accessed on May 16, 2014. http://visualization.geblogs.com/visualization/appliances/
Grigoletti G., Sattler A. M., Morello A., 2008. Analysis of the thermal behavior of a low cost, single-family, more sustainable house in Porto Alegre, Brazil; Energy and Buildings 40: 1961-1971.
Halwatura R.U., Jayasingue M. T. R., 2007. Strategies for improved micro-climates in high density residential developments in tropical climates, Energy for sustainable development, Vol.11, Issue 4: 54-65.
Hoyt T., Schiavon S., Piccioli A., Moon D., Steinfield K., 2013. Thermal comfort tool. Center for the Built Environment (CBE), University of California Berkeley, http://cbe.berkeley.edu/comforttool/
IBT, 2014. Economy in Latin America, International Business Times. Accessed on March 28, 2014, http://www.ibtimes.com/panamas-economy-will-grow-over-5-percent-2014-making-it-fastest-growing-economy-latin-america
INEC, 2011. Electricity consumption per sector in Panama. National Institute of Statistics and Census. Accessed on March 21, 2014, http://www.contraloria.gob.pa/inec/ archivos/ P4731325-02.pdf
INEC, 2011. Household characteristics. National Institute of Statistics and Census. Accessed on December 19, 2013. http://www.contraloria.gob.pa/inec/ Publicaciones/Publicaciones.aspx?ID_SUBCATEGORIA=59&ID_PUBLICACION=357&ID_ IDIOMA=1&ID_CATEGORIA=13
Keeler M., Burke B., 2009. Fundamentals of Integrated Design for Sustainable Buildings, pages 69-121, John Wiley & Sons, New Jersey.
Kharrufa S. N., Adil Y., 2012. Upgrading the building envelope to reduce cooling loads, Energy and Buildings 55: 389-396.
Kordjamshidi M., 2011. Thermal comfort. Housing rating schemes, Green Energy and Technology, Chapter 3, Springer New York.
Kubota T., Chyee D. T. H., Ahmad S., 2009. The effects of night ventilation technique on indoor thermal environment for residential buildings in hot-humid climate of Malaysia, Energy and Buildings 41: 829-839.
Luxmoore D. A., Jayasinghe M. T. R., Mahendran M., 2005. Mitigating temperature increases in high lot density sub-tropical residential developments, Energy and Buildings 37: 1212-1224
Liping W., Hien W. N., 2007. The impacts of ventilation strategies and façade on indoor thermal environment for naturally ventilated residential buildings in Singapore, Building and Environment 42: 4006-4015.
Makaka G., Meyer E. L., McPherson M., 2008. Thermal behavior and ventilation efficiency of a low-cost passive solar energy efficient house, Renewable Energy 33: 1959-1973.
Meteotest, 2012. Meteonorm software. Weather data for any site of the world. http://meteonorm.com/products/meteonorm-software/
Musseli M., 2010. Passive cooling for air-conditioning energy savings with new radiative low-cost coatings, Energy and Buildings 42: 945-954.
Nicol J. F., Humphreys M. A., 2002. Adaptive thermal comfort and sustainable thermal standards for buildings, Energy and Buildings 34: 563-572.
PanamaAmerica, 2007. El clima y la arquitectura (Architecture and climate). Accessed on March 21, 2014, http://panamaamerica.com.pa/content/el-clima-y-la-arquitectura
Panama-Guide, 2008. New high-rise construction can increase energy crisis. Accessed on March 21, 2014, http://www.panama-guide.com/article.php/20080412105541718
Panama-weather, 2013-2014. Relative humidity historic record. Accessed on March 20, 2014. http://www.wunderground.com/history/airport/MPTO/2013/1/1/
CustomHistory.html?MR=1.
Panama-weather, 2013-2014. Air temperature historic record, Accessed on March 20, 2014. http://www.tutiempo.net/clima/Tocumen/787920.htm
Peeters L., de Dear R., Hensen J., D’haeseleer W., 2009. Thermal comfort in residential buildings: comfort values and scales for building energy simulation. Applied Energy 86: 772-780.
Raj V. A. A., Velraj E., 2010. Review on free cooling of buildings using phase change materials, Renewable and Sutainable Energy Reviews 14: 2819-2829.
REECA, 2014. 4E Program: Renewable energy and efficiency in Central America. Accessed on May 11, 2014, http://www.energias4e.com/noticia.php?id=2351
Rothfusz, 1990. The heat index equation, Accessed on May 11, 2014 http://www.hpc.ncep.noaa.gov/html/heatindex_equation.shtml
Roulet C. A., Bluyssen P. M., Muller B., Oliveira Fernandes E. 2012. Design of Healthy, Comfortable, and Energy-efficient Buildings; Sustainable Environmental Design in Architectural Impacts on Health, Chapter 6. Springer New York.
Sadafi N., Salieh E., Haw L. C., Jaafar Z., 2011. Evaluating thermal effects of internal courtyard in a tropical terrace house by computational simulation, Energy and Buildings 43: 887-893.
Sadineni S. B., Madala S., Boehm R. F., 2011. Passive building energy savings: A review of building envelope components, Renewable and Sustainable Energy Review 15: 2011: 3617-3631.
Santamouris M. Koloktsa M., 2013. Passive cooling dissipation techniques for buildings and other structures: The state of the art, Energy and Buildings 57: 74-94.
Sekhar S. C., Goh S. E., 2011. Thermal comfort and IAQ characteristics of naturally/mechanically ventilated and air-conditioned bedrooms in a hot and humid climate, Energy and Buildings 46: 1905-1916.
Turner S. C., 2011. What’s new in ASHRAE’s Standard on comfort? ASHRAE Journal, June.
Utama A., Gheewala S. H., 2008. Life cycle energy of single landed houses in Indonesia, Energy and Buildings 40: 1911-1916.
Worldbank, 2014. Climate change in Panama. May 11, 2014 http://sdwebx.worldbank.org/climateportalb/home.cfm?page=country_profile &CCode=PAN
Zhang Y., Wang J., Chen H., Zhang J., Meng Q., 2010. Thermal comfort in naturally ventilated buildings in hot-humid area of China; Building and Environment 45: 2562-2570.