| 研究生: |
金尚節 Shan-Chieh Chin |
|---|---|
| 論文名稱: |
探討邊界層參數化對氣象與空氣污染模擬結果的影響 Effects of boundary layer schemes on meteorological and airquality simulation in Taiwan |
| 指導教授: |
鄭芳怡
Fang-yi Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 行星邊界層 、YSU與MYJ邊界層參數化 、局部與非局部傳輸 |
| 外文關鍵詞: | YSU and MYJ PBL scheme, Local and Non-local transport, Planetary Boundary Layer |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著中國經濟的發展,其污染物排放情形也越來越嚴重,由於台灣位在東亞與東南亞的交接處,當鋒面系統通過或是高壓迴流的天氣型態,會受到中國污染物長程輸送的影響。此外台灣為開發中國家,在台灣本島排放的影響下,局地造成高濃度污染的情形也相當嚴重。
本研究利用WRF 模式(Version 3.2.1)設定不同的邊界層參數化(YSU 與MYJ)對於2003 年4 月兩種不同天氣型態模擬台灣春季的氣象場,分別是綜觀效應強的個案一(4/13~4/15)以及綜觀效應弱的個案二(4/17~4/19),並且利用CMAQ 模式(Version 4.4),以WRF 氣象場結果,配合排放資料,模擬2003年4 月的空氣污染,討論兩種不同邊界層參數化在兩個期間對於空氣污染物傳輸、分佈的影響。
模擬的結果顯示,個案一期間,風場與邊界層高度模擬的差異使得污染物的分佈與傳輸有25ppb 以上的差別;個案二期間,有明顯的日夜海陸風交替,白天海上風速以YSU 大於MYJ(表示YSU 的海風較強),但是夜晚陸地風速為YSU 小於MYJ(表示YSU 的陸風較弱)。在污染物的時空分佈,YSU 白天海風較強的情形,使得YSU 污染分佈比起MYJ 較集中於沿海以內的區域,且離岸處MYJ 比YSU 有較高的臭氧濃度分佈。夜晚NO 與臭氧滴定效應,因為YSU 陸風較弱,使得YSU 臭氧低濃度分佈情形比較集中於排放源區附近的區域。與觀測資料比較,YSU 在風速、溫度以及污染物濃度與觀測的偏差比較小,模擬結果比較符合觀測。
The O3 and aerosol problem in Taiwan can be locally produced or long-range transported (LRT) from Gobi desert. The LRT of O3 problems are mostly observed during the spring season under the influence of Asian continental outflow. The O3 concentration about 50 to 70 ppb is observed under the impact of LRT while the locally produced O3 concentration can reach up to 100 ppb easily.
To adequately simulate air pollution events in Taiwan, the correct representation of the boundary layer wind, temperature, moisture, flux components and mixing heights, are needed for air quality modeling which are strongly dependent on the boundary layer parameterizations in meteorological models.
In this study, meteorological simulations are performed using Weather Research Forecasting (WRF)(V3.2.1) model by applying two different PBL schemes (YSU and MYJ). Community Multiscale Air Quality (CMAQ) modeling system is performed subsequently to study the effect of the PBL physical processes on the meteorological and air quality simulations.
The comparison focused on two different atmospheric conditions. Case 1 is under the influence of the Asia continental outflow and the air pollutants is long-range transported (LRT) to northern Taiwan. Case 2 is associated with the land-sea breeze flow and the locally generated ozone concentration can reach up to 120 ppb.
The simulation using YSU scheme predicts higher temperature during the night and inducing weaker land breeze flow which would accumulate the NO in the source region. The O3 titration is stronger near the source region and lower in the offshore area. During the daytime, the simulation using YSU scheme predicts higher temperature thus inducing stronger sea breeze flow which would carry the O3 produced in the previous day back into the Taiwan Island. The stronger sea breeze from simulation using YSU would predict higher O3 toward inland and lower O3 in the offshore area than the one using MYJ. Comparison with the observation datasets identifies less bias of the wind speed, temperature and ozone concentration with the simulation using YSU scheme. Wind direction is reasonably captured in both simulations.
陳致穎,2005:桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析。
國立中央大學大氣物理研究所,碩士論文。
江宙君,2007:海陸風對台灣沿海地區空氣品質之影響。國立中央大學大氣物理
研究所,碩士論文。
蔣至剛,2010:北台灣地區臭氧汙染之季節效應與東亞污染出流之影響。國立中
央大學大氣物理研究所,博士論文。
許郁卿,2011:土地利用型態對地表能量收支與海陸風模擬的影響。國立中央大
學大氣物理研究所,碩士論文。
Banta, R. M., and Coauthors, 2005:A bad air day in Houston. Bull. Amer. Meteor. Soc., 86,
657–669.
Borge, R., V. Alexandrov, J. J. del Vas, J. Lumbreras, and E. Rodriguez, 2008: A
comprehensive sensitivity analysis of the WRF model for air quality applications over
the Iberian Peninsula. Atmos. Environ., 42, 8560–8574.
Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of
Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea.
Rev., 128, 3941–3961.
Bright, D. R., and S. L. Mullen, 2002: The sensitivity of the numerical simulation of
the southwest monsoon boundary layer to the choice of PBL turbulence
parameterization in MM5. Wea. Forecasting, 17, 99–114.
Chiang, C. K., J. F. Fan, J. Li, J. S. Chang, 2009: The impact of Asian continental
outflow on the springtime ozone mixing ratio in northern Taiwan. Journal of
Geophysical Research, 114, D24304, doi:10.1029/2008JD011322
Daum, P. H., L. I. Kleinman, S. R. Springston, L. J. Nunnermacker, Y.-N. Lee, J.
Weinstein-Lloyd, J. Zheng, and C. M. Berkowitz, 2003: A comparative study of O3
formation in the Houston urban and industrial plumes during the 2000 Texas Air Quality
Study. J. Geophys. Res., 108 (D23), 4715, doi:10.1029/2003JD003552.
Gammon J. W. N., Xiao-Ming Hu, F. Zhang, J. E. Pleim, 2010: Evaluation of Planetary
Boundary Layer Scheme Sensitivities for the Purpose of Parameter Estimation, Mon.
Wea. Rev., 138, 3400-3417
Han, Z., H. Ueda, and J. An, 2008: Evaluation and intercomparison of meteorological
predictions by five MM5-PBL parameterizations in combination with three
land-surface models. Atmos. Environ., 42, 233–249.
Hong, S. Y., H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a
medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339
Hong, Y. Noh, and J.Dudhia, 2006: A new vertical diffusion package with explicit
treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hong, and S.-W. Kim, 2008: Stable boundary layer mixing in a vertical diffusion
scheme. Proc. Ninth Annual WRF User’s Workshop, Boulder, CO, National
Center for Atmospheric Research, 3.3. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/3-03.pdf.]
Hu, X. M., J. W. N. Gammon, and F. Zhang, 2010: Evaluation of Three Planetary
Boundary Layer Schemes in the WRF Model, Journal of Applied Meteorology
and Climatology, 49, 1831-1844
Janjic, 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme
in the NCEP Meso model. NOAA/NWS/NCEP Office Note 437, 61 pp
Jankov, I., W. A. Gallus Jr., M. Segal, B. Shaw, and S. E. Koch, 2005: The impact
of different WRF model physical parameterizations and their interactions on
warm season MCS rainfall. Wea. Forecasting, 20, 1048–1060.
Jankov, P. J. Schultz, C. J. Anderson, and S. E. Koch, 2007: The impact of different physical
parameterizations and their interactions on cold season QPF in the American river basin.
J. Hydrometeor., 8, 1141–1151.
Lee, S. M., W. Giori, M. Princevac, and H. J. S. Fernando, 2006: Implementation of
a stable PBL turbulence parameterization for the mesoscale model
MM5:Nocturnal flow in complex terrain, Boundary-Layer Meteorology, 119,
109-134
Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of
Hurricane Emily 2005: to cloud microphysical and planetary boundary layer
parameterizations. Mon. Wea. Rev., 136, 4819–4838.
Miao, J.-F., and Coauthors, 2008: Evaluation of MM5 mesoscale model at local scale
for air quality applications over the Swedish west coast: Influence of PBL and
LSM parameterizations. Meteor. Atmos. Phys., 99, 77–103.
Misenis, C., X. M. Hu, S. Krishnan, Y. Zhang, J. Fast, 2006: Sensitivity of
WRF/Chem predictions to meteorological schemes. Proc. 86th Annual
onference/14th Joint Conf. on the Applications of Air Pollution Meteorology with the A&WMA,Atlanta, GA, Amer. Meteor. Soc., paper 1.8.
Noh, Y., W. G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the
K-profile model for the planetary boundary layer based on large eddy simulation
data. Bound.-Layer Meteor., 107, 401–427.
Srinivas, C. V., R. Venkatesan, and A. Bagavath Singh, 2007: Sensitivity of mesoscale
simulations of land-sea breeze to boundary layer turbulence parameterization. Atmos.
Environ., 41, 2534–2548.
Streets, D. G., et al. 2003: An inventory of gaseous and primary aerosol emissions in
Asia in the year 2000, J. Geophys. Res., 108(D21), 8809,
doi:10.1029/2002JD003093.
Suselj, K., and A. Sood, 2010: Improving the Mellor–Yamada–Janji´c
Parameterization for wind conditions in the marine planetary boundary layer,
Boundary-Layer Meteorology, 136, 301-324
Zhang, D.-L., and W.-Z. Zheng, 2004: Diurnal cycles of surface winds and
temperatures as simulated by five boundary layer parameterizations. J. Appl.
Meteor., 43, 157–169.
Zhang, F., N. Bei, J.W. Nielsen-Gammon, G. Li, R. Zhang, A. Stuart, and A. Aksoy,
2007: Impacts of meteorological uncertainties on ozone pollution predictability
estimated through meteorological and photochemical ensemble forecasts. J.
Geophys. Res., 112, D04304, doi:10.1029/2006JD007429.
Zhong, S., H. In, and C. Clements, 2007: Impact of turbulence, land surface, and
radiation parameterizations on simulated boundary layer properties in a coastal
environment. J. Geophys. Res., 112, D13110, doi:10.1029/2006JD008274.