跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭書彧
Peng-Shu-Yu
論文名稱: 用於深紫外發光二極體的氮化硼生長
Growth of boron nitride for deep ultraviolet light-emitting Diodes
指導教授: 賴昆佑
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 47
中文關鍵詞: 氮化硼
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,深紫外(deep ultraviolet, DUV, 波長 ≤ 290 nm)發光二極體 (light-emitting diodes,
    LEDs) 的外部量子效率很難突破 20%,遠低於可見光 LED 的水準,主要原因在於:深紫外
    LED 的 P 型磊晶層必須同時具備高穿透率、高導電性,而這是一般 DUV LED 常用材料—氮
    化鋁鎵(AlGaN)所不具備的特性。然而 hBN (hexagonal Boron Nitride)是近年來熱門的三五
    族氮化物材料,其兼具高能帶、低電洞活化能的特性,能使深紫外光波段的光不被吸收,
    亦能大幅提升電洞濃度,增加導電性,是深紫外 LED 所需的理想 P 型材料。此外,氮化硼
    的能帶高達 6 eV,接近氮化鋁 (AlN) 的 6.1 eV,能阻擋電子離開量子井,增加 DUV LED 的
    內部量子效率。文獻顯示,氮化硼的電洞活化能最低可達 30 meV,遠低於 AlN 的 510 meV,
    能提供大量電洞進入量子井,提升電洞電子對在量子井的複合數量,增強 DUV LED 的發光
    效率,也能降低操作電壓,減少熱能生成,有助於提升元件的使用壽命。上述的優點,使
    氮化硼成為目前 DUV LED 非常熱門的 P 型材料


    Despite years of research efforts, the external quantum efficiency of deep ultraviolet (DUV,
    wavelength ≤ 290 nm) LEDs rarely exceed 20%, far below the level of visible LEDs. The main
    reason is that the p-type contact layer of DUV LEDs must simultaneously fulfill the requirement of
    high transparent and high conductive, which is extremely difficult to achieve with the commonly
    used material, AlGaN. To address the issue, hexagonal boron nitride (hBN) is recently regarded as a
    potential alternative to AlGaN. hBN has the characteristics of high energy band and low hole
    activation energy, which can prevent light absorption and provide sufficient free hole concentration
    in the p-type layer. Because of the two merits, hBN is an ideal p-type material for DUV LEDs. In
    addition, the wide bandgap (6 eV) of hBN can form a large band offset with AlGaN, effectively
    blocking the electron spill from quantum wells. The hole activation energy of boron nitride is
    reported to be as low as 30 meV, which is much lower than the ~510 meV of AlN. With such small
    activation energy, hBN can provide a large number of holes to enter the quantum well, enhancing
    the quantum efficiency of DUV LEDs. The low hole activation energy can also lower the operating
    voltage, reduce heat generation, and thus improve device lifetime. The above-mentioned advantages
    make boron nitride a promising p-type material for DUV LEDs.

    第一章、緒論…………………………………………………………………………… 1.1.氮化硼應用於深紫外發光二極體的優勢……………………………...…1 1.2.氮化硼應用的技術現況……………………………………………………3 1.3.低溫生長相對於高溫生長的差異與優勢…………………………………4 1.4.實驗方法與概論……………………………………………………………6 第二章、 實驗方法、製程與儀器……………………………………………………… 2.1. 有機金屬化學氣相沉積法………………………………………..………7 2.2. 掃描式電子顯微鏡 ………………………………………………………11 2.3. X 光繞射儀…………………………………………………………….…13 2.4. 原子力顯微鏡………………………………………………………….…15 第三章、分析與討論 ………………………………………………………………… 3.1.磊晶結構與基本製成介紹………………………………………………..16 3.2.五三比與磊晶時間………………………………………………………..18 3.3.氮化硼脈衝流與持續流的效果……………………………………….…23 3.4.不同結構的氮化鋁上的氮化硼差異……………………………………28 第四章、結論與未來展望 …………………………………………………………… 33 參考文獻……………………………………………………………………………… 34

    [1] H. X. Jiang and J. Y. Lin, Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond.
    Sci. Technol. 29, 084003 (2014).
    [2] X. H. Jiang et al. Reduction of the Mg Acceptor Activation Energy in GaN, AlN, Al0.83Ga0.17N
    and MgGaδ-Doping (AlN)5/(GaN)1: The Strain Effect. J. Phys. D: Appl. Phys. 48, 475104 (2015).
    [3] M. Soltani, R. Soref, T. Palacios, and D. Englund, AlGaN/AlN integrated photonics platform for
    the ultraviolet and visible spectral range. Optics Express. 24, 25415-25423 (2016).
    [4] R. A. Patil. et al. Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using
    pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted
    photoluminescence. Nanoscale 8, 3565-3571 (2016).
    [5] Seung Hee Lee. et al. Improvements in structural and optical properties of wafer-scale hexagonal
    boron nitride flm by post-growth annealing. Scientific Reports. 9, 10590 (2019).
    [6] Y. Zhang, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 459,
    820-823 (2009).
    [7] Th. Böker, et al. “Band structure of MoS2, MoSe2, and a - MoTe2: Angle-resolved photoelectron
    spectroscopy and ab initio calculations. Phys. Rev. B. 64, 235305 (2001).
    [8] L. Wang, et al. Negligible Environmental Sensitivity of Graphene in a Hexagonal Boron
    Nitride/Graphene/h-BN Sandwich Structure. ACS Nano. 6, 9314–9319 (2012).
    [9] M. Bokdam, G. Brocks, M. I. Katsnelson, and P. J. Kelly. Schottky barriers at hexagonal boron
    nitride/metal interfaces: A first-principles study. Phys. Rev. B. 90, 085415 (2014).
    [10] Xu Yang, et al. Growth of hexagonal boron nitride on sapphire substrate by
    pulsed-mode metalorganic vapor phase epitaxy, Journal of crystal Growth. 482, 1-8 (2018).
    [11] Q. S. Paduano, M. Snure, and J. Shoaf. Effect of V/III ratio on the growth of hexagonal boron
    nitride by MOCVD. Mater. Res. Soc. Symp. Proc. 1726, 1–6 (2015).
    [12] Chuang-Yuan Chiu, Growth of High-Quality AlN Via Pulsed-Flow MOCVD. Master's thesis.
    35
    National Central University. (2020).
    [13] Chun-Pin Huang, High Quality AlN and BN Grown by MOCVD for Deep UV LEDs. Master
    Thesis. National Central University. (2020).
    [14] Chun-Pin Huang, et al. Crystal Transformation of Cubic BN Nanoislands to Rhombohedral
    BN Sheets on AlN for Deep-UV Light-Emitting Diodes, ACS Appl. Nano Mater. 5285–5290 (2020).
    [15] Y. Kobayashi, et al. Hexagonal Boron Nitride Grown by MOVPE, Journal of Crystal Growth.
    310, 5048–5052 (2008).
    [16] J. Iwański, et al. Delamination of Large Area Layers of Hexagonal Boron Nitride Grown
    by MOVPE, Acta Physica Polonica A. 139, 457-461 (2021).
    [17] Adama Mballo, et al. Towards P-Type Conduction in Hexagonal Boron Nitride: Doping Study
    and Electrical Measurements Analysis of hBN/AlGaN Heterojunctions. Nanomaterials, 11, 211
    (2021).
    [18] Kenji Watanabe, et al. Far-ultraviolet plane-emission handheld device based on hexagonal boron
    nitride. Nature Photonics. 3, 591–594 (2009).
    [19] R. Dahal, et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet
    photonic material. Appl. Phys. Lett. 98, 211110 (2011)
    [20] S. Majety, et al. Epitaxial growth and demonstration of hexagonal BN/AlGaN p-n junctions for
    deep ultraviolet photonics. Appl. Phys. Lett. 100, 061121 (2012

    QR CODE
    :::