跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李健平
Chien-Ping Lee
論文名稱: 利用臨時微震網對台灣西北部地震活動與地下構造之研究
A Study of the Seismicity and Subsurface Structures using a Temporary Seismic Network in Northwestern Taiwan
指導教授: 蔡義本
Yi-Ben Tsai
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 93
語文別: 中文
論文頁數: 156
中文關鍵詞: 共振主頻震源機制地震重新定位台灣西北部地震活動臨時微震網
外文關鍵詞: northwestern Taiwan, seismicity, temporary seismic network, dominent frequency, earthquake relocation, focal mechanism
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在地震分布上,台灣西北部向來是地震活動較少的區域,但近年來的研究顯示本區域在地質構造上有其特殊之處,此外,本區域有許多重要的公共設施與工商重鎮,且在1999年九二一大地震時,位於新竹的強震站曾記錄到異常大的震度,再加上1935年的新竹-台中烈震在本區域南端發生,儘管在本區域地震發生的次數相對較少,但是否有可能發生大地震,仍然是值得關注的焦點,因此本研究針對本區域的地震活動與地下構造加以探討。
    本研究自2001年1月起,陸續於桃園、新竹與苗栗一帶設置十個地震站,構成一個臨時微震網。每個地震站包含一部加速度地震儀,外接三分量速度型感應器,並配有GPS全球定位系統,以及資料儲存裝置。由於本微震網備有GPS的絕對時間系統,有利於地震的精確定位。為了收錄規模較小的地震,或是對於小區域地震能有量多質優的記錄,在地震站的選址上,設置密集的地震站是必要的,但是在儀器數量有限的情況下,局部區域過於密集的測站分布,容易使微震網外的地震失去測站的包覆性,影響定位品質,故本微震網之測站採均勻佈設於全研究區域內。
    本研究利用所佈設的臨時微震網,結合中央氣象局地震網(CWBSN)的資料進行地震定位,並利用地震群重新定位的方法對於本區域的地震活動進行更深入的分析,嘗試與活斷層分布、地質剖面比對。另外也定出大批地震的震源機制,有助於對本區域地體構造應力特性之瞭解。最後利用地震定位所得到的P波平均走時殘差與加速度記錄頻譜所得到的共振主頻比較,估算沖積層厚度。
    由本微震網結合CWBSN資料的定位結果,可看出加入距離震源較近的微震網測站資料後,地震在深度上有明顯的變化,本區域的震源深度大都在15公里以內。使用一維速度模型造成地震定位系統性的偏差,在利用DD和JHD做地震群重新定位後,地震位置有明顯地改善,且在水平方向上呈現往西北偏移的情況,深度上集中在5到10公里處。JHD的測站修正量則反映出本區域西北-東南方向速度構造的差異,與地質和地形的趨勢皆甚一致。而由重新地震定位後的地震分布與地質剖面比對,則顯示地震位置與地下構造有關。
    在利用加速度資料以決定震源機制部分,先將單站的三分量加速度記錄積分成位移波形,再用波形逆推方法定出震源機制,共計得到88個芮氏規模為1.35到3.33之間的地震震源機制。由這些震源機制區分出不同斷層類型,結果顯示本研究區域除了有逆斷層和走向滑移斷層的震源機制外,也存在不少正斷層的震源機制。本微震網波形逆推所得到複雜的震源機制結果,顯示許多小地震的發生可能是由次生構造所引起。
    本研究最後嘗試結合速度和加速度記錄資料,對各地沖積層厚度做一比較和估算。利用速度到時資料做地震定位所得到的測站P波平均走時殘差和利用加速度波形資料計算傅立葉譜得到的測站共振主頻,兩者得到本區域的等值圖並不一致,且利用這兩個參數估算出來的沖積層厚度也有很大差異。另外比較測站P波平均走時殘差和由JHD所得到的P波測站修正量,前者主要反映縱向的速度構造,後者則以側向速度構造為主。然而P波平均走時殘差與地表地質和地形有良好的對應,並且在與地質剖面比對時,顯示兩者也有其相關性,因此可利用P波平均走時殘差的等值圖反映地下構造的趨勢。


    The seismicity is low in northwestern Taiwan for a long time. However, recent studies indicated the geological characteristics in this area are special. Besides that, many important facilities, industrial and economic cities are in this area. Significant intensity was recorded at seismic stations in Hsinchu area during the 1999 Chi-Chi earthquake. And the disastrous Hsinchu-Taichung earthquake in 1935 occurred in the southern part of this area. Thus, potential recurrence of large earthquakes in this area becomes important topics. In response, the seismicity and subsurface structures are analyzed in this study.
    A temporary seismic network including ten seismic stations was deployed in Taoyuan, Hsinchu and Miaoli counties in northwestern Taiwan since January 2001. Each station has one triaxial accelerograph, three external one-component velocity sensors, global positioning system, and data storage device. Seismic records with absolute timing are critical to obtain accurate earthquake locations. Dense station distribution is necessary to get earthquakes with lower magnitude from clear seismic signals recorded in local area. Based on considerations of available instruments and recording sites, the stations were deployed uniformly in the study area.
    In this study, the arrival time data of the temporary seismic network and CWBSN are combined to locate earthquake. Two dense earthquake clusters were relocated to compare several geological cross sections. In order to study the stress patterns, numerous focal mechanisms were determined by waveform inversion. Finally, the thicknesses of alluvium were estimated by using the P-wave travel-time residuals from earthquake location and the dominant frequencies identified from spectra of ground acceleration.
    By combining the temporary seismic network and CWBSN data, the results of earthquake location show significant convergent in focal depths due to adding of the near source arrival time data. Most of the hypocenters are located shallower than 15 km at depth. Relocation of two dense clusters using the JHD and DD methods removed systematic bias due to one-dimensional velocity model. The events were shifted toward northwest in the horizontal direction and became clustered at depth from 5 to 10 km. The station corrections of JHD reflected the difference in geology of the northwest and southeast parts in the study area. It is also consistent with distinct topographic features. By comparing the relocated events with several geological cross sections, we found that the seismicity and subsurface structures are related.
    To determine the focal mechanisms using waveform inversion, the acceleration records were used. The acceleration records of a single station with three-component sensors are doubly integrated to get displacement waveforms. Then the focal mechanisms are determined by waveform inversion. In total, 88 focal mechanisms were determined with local magnitudes from 1.35 to 3.33. The widespread presences of complex fault types of focal mechanisms imply that the microearthquakes might be triggered by subfaults.
    Finally, the thicknesses of alluvium were estimated by correlating the velocity and acceleration data. Results from the averaged P-wave travel-time residuals from earthquake location and from the dominant frequency from Fourier spectra are not consistent to each other. The thicknesses of alluvium obtained by these two methods are different. However, the averaged P-wave travel-time residuals can be correlated with geology and topography. There is good relation between travel-time residuals and geological cross-sections. The results imply that the averaged P-wave travel-time residuals can be used to prospect the subsurface structures.

    摘要 i 誌謝 v 目錄 vi 圖目 ix 表目 xiii 符號說明 xiv 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 文獻回顧 6 1.4 本文內容 8 第二章 研究區域背景介紹 10 2.1 區域地質 10 2.2 臨時微震網介紹 10 2.3 地震資料品質 18 第三章 臨時微震網之地震定位 22 3.1 引言 22 3.2不同時期地震分布 24 3.3 單一地震之地震定位 26 3.4 地震群之地震重新定位 33 3.4.1 聯合震源定位法之地震重新定位 37 3.4.2 雙差分定位法之地震重新定位 45 3.5 地震分布與地下構造之關係 52 3.6 討論 60 第四章 由強震記錄逆推震源機制 62 4.1 引言 62 4.2 強震資料的處理流程 64 4.3 由波形逆推震源機制之原理 68 4.4 由強震記錄逆推震源機制之測試 74 4.4.1 比對BATS的震源機制 74 4.4.2 比對不同測站的震源機制 76 4.5 本研究所定出之震源機制 78 4.6 震源機制與地下構造之關係 88 4.7 討論 93 第五章 沖積層厚度之探討 97 5.1 引言 97 5.2 P波平均走時殘差與沖積層厚度之關係 97 5.3 共振主頻與沖積層厚度之關係 101 5.4 測站修正量與沖積層厚度之關係 111 5.5 P波平均走時殘差與地下構造之關係 114 5.6 討論 119 第六章 討論與結論 121 參考文獻 123 附錄A:波形逆推出的震源機制解 128 附錄B:由波形逆推得出88個地震的震源參數表 151

    Aki, K., and P. G. Richards (2002). Quantitative seismology, Second Edition, University Science Books, Sausalito, California, 700 pp.
    Boore, D. M. (2005). On pads and filters: processing strong-motion data, Bull. Seism. Soc. Am. 95, 745-750.
    Central Geologic Survey (2000). An introduction to the active faults in Taiwan, 2nd edition, Spec. Publ. Cent. Geol. Surv., No. 13, MOEA, Taiwan.
    Chen, Y. L., and T. C. Shin (1998). Study of the earthquake location of 3-D velocity structure in Taiwan area. Meteor. Bull. 42, 135-169.
    Chiu, H. C. (1997). Stable baseline correction of digital strong-motion data, Bull. Seism. Soc. Am. 87, 932-944.
    Chiu, J. M., S. C. C. Chiu, and S. G. Kim (1997). The significance of the crustal velocity model in local earthquake locations from a case example of a PANDA experiment in the Central United States, Bull. Seism. Soc. Am. 87, 1537-1552.
    Douglas, A. (1967). Joint epicentre determination, Nature 215, 47-48.
    Dreger, D. S., and D. V. Helmberger (1990). Broadband modeling of local earthquakes, Bull. Seism. Soc. Am. 80, 1162-1179.
    Dreger, D. S., and D. V. Gelmberger (1991). Source parameters of the Sierra Madre earthquake from regional and local body waves, Geophys. Res. Lett. 18, 2015-2018.
    Dreger, D. S., and D. V. Helmberger (1993). Determination of source parameters at regional distances with three-component sparse network data, J. Geophys. Res. 98, 8107-8125.
    Fan, G., and T. C. Wallace (1991). The determination of source parameters for small earthquakes from a single very broadband seismic station, Geophys. Res. Lett. 18, 1385-1388.
    Fletcher, J. B., and A. McGarr (2005). Moment tensor inversion of ground motion from mining-induced earthquake, Trail Mountain, Utah, Bull. Seism. Soc. Am. 95, 48-57.
    Frohlich, C. (1992). Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms, Physics of the Earth and Planetary Interiors, 75, 193-198.
    Geiger, L. (1912). Probability method for the determination of earthquake epicenters from the arrival time only, Bull. St. Louis Univ. 8, 56-71.
    Herrmann, R. B. (1975). A student’s guide to the use of P and S wave data for focal mechanism determination, Earthquake Notes 46, 29-39.
    Herrmann, R. B. (1979). SH-wave generation by dislocation sources – A numerical study, Bull. Seism. Soc. Am. 69, 1-15.
    Huang, B. S. (1994). Estimation of source parameters by the inversion of near source strong motion wave forms, Terr. Atmos. Ocean. Sci. 5, 11-26.
    Hudson, D. E. (1979). Reading and interpreting strong motion accelerograms, Earthquake Engineering Research Institute Monograph, Berkeley, California, 112 pp.
    Johnson, L. R. (1974). Green’s function for Lamb’s problem, Geophys. J. R. astr. Soc. 37, 99-131.
    Jost, M. L., and R. B. Herrmann (1989). A student’s guide to and review of moment tensors, Seism. Res. Lett. 60, 37-57.
    Jost, M. L., O. Knabenbauer, J. Cheng, and H. P. Harjes (2002). Fault plane solutions of microearthquakes and small events in the Hellenic arc, Tectonophys. 356, 87-114.
    Julian, B. R., A. D. Miller, and G. R. Foulger (1998). Non-double-couple earthquakes, Rev. Geophys. 36, 525-549.
    Kanamori, H., J. Mori, and T. H. Heaton (1990). The 3 December 1988 Pasadena earthquake (ML = 4.9) recorded with the very broadband system in Pasadena, Bull. Seism. Soc. Am. 80, 483-487.
    Kao, H., and P. R. Jian (1999). Source parameters of regional earthquakes in Taiwan: July 1995-December 1996, Terr. Atmos. Ocean. Sci. 10, 585-604.
    Kim, K. H. (2003). Subsurface structure, seismicity patterns, and their implications to tectonic evolution in Taiwan, Ph.D. dissertation, Univerity of Memphis, 159 pp.
    Lay, T., and T. C. Wallace (1995). Modern global seismology, Academic Press, 521 pp.
    Lee, C. P. and Tsai (2004). Variations of P-wave travel-time residuals before and after the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am. 94, 2348-2365.
    Lee, W. H. K., and J. C. Lahr (1972). HYPO71: A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. U.S. Geol. Surv. Open-File Rep. 100 pp.
    Lee, W. H. K., and J. C. Lahr (1975). HYPO71 (revised): a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. U.S. Geol. Surv. Open-File Rep. 75-311, 113 pp.
    Lee, W. H. K., and S. W. Stewart (1981). Principles and applications of microearthquake networks, Academic Press. 293 pp.
    Lee, W. H. K., J. C. Lahr, and C. M. Valdes (2003). The HYPO71 earthquake location program. (Eds) W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger. International Handbook of Earthquake & Engineering Seismology. Part B. Academic Press. 1641-1642.
    Liang, W. T., Y. H. Liu, and H. Kao (2003). Source parameters of regional earthquakes in Taiwan: January-December, 2001, Terr. Atmos. Ocean. Sci. 14, 249-260.
    Murphy, J. R. and L. J. O’Brien (1977). The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters, Bull. Seism. Soc. Am. 67, 877-915.
    Pavlis, G. and J. Booker (1983). Progressive multiple event location (PMEL), Bull. Seism. Soc. Am. 73, 1753-1777.
    Pujol, J. (1988). Comments on the joint determination of hypocenters and station corrections, Bull. Seism. Soc. Am. 78, 1179-1189.
    Pujol, J. (1992). Joint hypocentral location in media with lateral velocity variations and interpretation of the station corrections, Phys. Earth Planet. Inter. 75, 7-24.
    Pujol, J. (1995). Application of the JHD technique to the Loma Prieta, California, mainshock-aftershock sequence and implications for earthquake location, Bull. Seism. Soc. Am. 85, 129-150.
    Pujol, J. (2003). Software for joint hypocentral determination using local events. (Eds) W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger. International Handbook of Earthquake & Engineering Seismology. Part B. Academic Press. 1621-1623.
    Reiter, L (1991). Earthquake hazard analysis: issues and insights, Columbia University Press, New York, 254 pp.
    Shakal, A. F., M. J. Huang, and V. M. Graizer (2003). Strong-Motion Data Processing. (Eds) W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger. International Handbook of Earthquake & Engineering Seismology. Part B. Academic Press. 967-981.
    Shearer, P. M. (1999). Introduction to seismology, Cambridge University Press. 260 pp.
    Shin, T. C. (2000). Some seismological aspects of the 1999 Chi-Chi earthquake in Taiwan, Terr. Atmos. Ocean. Sci. 11, 555-566.
    Shyu, J. B. H., K. Sieh, Y. G. Chen, Y. Ota, J. C. Lee, C. T. Lee, Q. Sung, and C. Rubin (2001). A preliminary neotectonic map of Taiwan, iSEAT1: International Symposium on Earthquake and Active Tectonics, Taipei, Taiwan, 107-108.
    Stump, B. W., and L. R. Johnson (1977). The determination of source properties by the linear inversion of seismograms, Bull. Seism. Soc. Am. 67, 1489-1502
    Suppe, J., and J. Namson (1979). Fault-bend origin of frontal folds of the western Taiwan fold-and-thrust belt, Petro. Geol. Taiwan, 16, 1-8.
    Tsai, Y. B. (1995). Comparison of observed ground acceleration response spectra from four recent large earthquakes in California with the Uniform Building code seismic design spectra, in Urban Disaster Mitigation - the Role of Engineering and Technology, edited by F. Y. Cheng and M. S. Sheu, Elsevier, 15-30.
    Waldhauser, F., and W. L. Ellsworth (2000). A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California, Bull. Seism. Soc. Am. 90, 1353-1368.
    Wang, C. Y., and T. C. Shin (1998). Illustrating 100 years of Taiwan seismicity, Terr. Atmos. Ocean. Sci. 9, 589-614.
    Wang, C. Y., C. H. Chang, and H. Y. Yen (2000) An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model, Terr. Atmos. Ocean. Sci. 11, 609-630.
    Wang, C. Y., J. D. Chiu, and L. A. Lin (2001). The detection of three active faults on the Taoyuan terrace, northwestern Taiwan by shallow reflection seismics, Terr. Atmos. Ocean. Sci. 12, 599-614.
    Yu, S. B., H. Y. Chen, L. C. Kuo (1997). Velocity field of GPS stations in the Taiwan area, Tectonophys. 274, 41-59.
    林孝維(2004)。利用傅氏振幅譜比法分析全台灣強震站的場址,碩士論文,國立中央大學地球物理研究所,220頁。
    黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威、徐祥宏(2004)。斷層活動性觀測與地震潛勢評估調查研究:台灣陸上斷層帶地質構造與地殼變形調查研究(5/5)-台灣西部麓山帶地區地下構造綜合分析,經濟部中央地質調查所,59頁。
    楊耿明等(2000, 2001, 2002, 2003)。台灣陸上斷層帶地質構造與地殼變形調查研究地質構造剖面圖。
    楊耿明、黃旭燦、吳榮章、丁信修、梅文威、徐祥宏(2002)。斷層活動性觀測與地震潛勢評估調查研究:台灣陸上斷層帶地質構造與地殼變形調查研究(3/5)-新城斷層及其附近地區,經濟部中央地質調查所,52頁。
    趙曉玲(2001)。利用九二一地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究,碩士論文,國立中央大學地球物理研究所,130頁。
    葉永田、鄭世楠、辛在勤、何美儀(1995)。台灣地區數個地震目錄的地震定位與規模之評估(III),中央氣象局地震測報中心技術報告彙編,第11卷,243-264。
    蔡義本、王乾盈、李錫堤、許茂雄、劉坤松(1998)。台灣區學校附近活斷層普查及防震對策研究計畫,台灣省教育廳委託研究報告,274頁。
    鄭世楠、葉永田(1989)。西元1604年至1988年台灣地區地震目錄,中央研究院地球科學研究所,IES-R-661,255頁。

    QR CODE
    :::