| 研究生: |
許啟彬 Hsu, Chi Pin |
|---|---|
| 論文名稱: |
電腦輔助人工膝關節術後定位與磨損分析之技術發展 Development of Computer-Aided Technique to Postoperatively Evaluate Registration and Damage for Total Knee Replacement |
| 指導教授: |
賴景義
Lai, Jiing Yih |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 術後評估 、影像處理 、影像定位 、人工膝關節 、電腦輔助診斷 |
| 外文關鍵詞: | Postoperatively evaluate, Image processing, Image registration, Knee prosthesis, Computer aided diagnosis |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人工膝關節置換已是相當普及的手術,而人工膝關節會因長期使用產生塑膠墊片或金屬元件的磨損,如產生過多的磨屑可能會導致骨溶解,因此手術後的追蹤觀測金屬元件對位情況與塑膠墊片磨損情形是相當重要的。傳統觀測大多使用X光影像,而二維影像難以精確判斷出元件對位或墊片磨損情形,因此發展電腦輔助的X光影像三維定位技術來協助分析。傳統X光定位於硬體方面必頇使用昂貴的垂直正交X光機或特殊拍攝姿勢來固定膝關節取得X光影像,軟體方面使用的粗定位方法為手動調整或資料庫比對,甚至對於精定位的影像夾角也必頇預先取得,因此對於效率與臨床應用還有很大的進步空間。
本研究針對現有X光定位之缺點,於硬體方面設計膝關節固定器與旋轉平台來拍攝不同方位之X光影像,於效率提升方面以網格簡化與特徵分離方法減少光學掃描的網格模型資料,X光定位技術方面則提出自動化的特徵辨識粗定位方法提升定位效率,精定位則使用輪廓比對技術,並以獨立與合併比對之流程計算正確的影像夾角提升定位精確性,最後將定位結果反推計算塑膠墊片的磨損區域。實驗驗證方面除針對演算法正確性的模擬測詴外,還進行體外與人體實驗,利用體外夾治具與旋轉平台分別進行之,而實驗結果發現整體的精確度約0.3 mm,對於僅使用肉眼觀察的臨床醫師或長期的追蹤診斷已相當足夠,同時也能提升X光定位技術於臨床適用性。
After total knee replacement, the monitoring of the prosthetic performance is often done by roentgenographic examination. However, the two-dimensional (2D) roentgen images only provide information about the projection onto the anteroposterior (AP) and medrolateral (ML) planes. In particular, the radiolucent insert is not obvious and the wear of the insert is difficult to exactly define. The model-based roentgen stereo-photogrammetric analysis (RSA) has recently been developed to in vivo estimate the prosthetic pose (i.e. location and orientation). For hardware of model-based RSA, specific X-ray equipment (e.g. dual) or photography posture (e.g. supine) is used to synchronize the capture of two knee images and incline angle. For software of model-based RSA, the excessive elements of mesh model and the process of manual adjustment inevitably leads to low efficiency and practicability.
In this study, one hardware design, two mesh-manipulating methods, and two RSA algorithms were developed to improve the clinical applicability of the RSA method. Firstly, this study designed the rotation platform to avoid the use of the dual synchronized X-ray system. In addition, two mesh-manipulating methods (QEM simplified method and feature-segmented method) for knee model were developed to decrease the element number of the models and thus increase the execution efficiency. Finally, the feature-recognized and outline-optimized algorithms were further used to automatically estimate the rough registration and measure the exact inclined angle of two X-ray photos. The simulative and experimental tests were used to validate clinical applicability, robustness, and accuracy of the aforementioned methods.
[1] G. C. Sutton, “Computer‐aided diagnosis: A review”, British Journal of Surgery, Vol. 76, No. 1, pp. 82-85, 1989.
[2] G. C. Sutton, “How accurate is computer-aided diagnosis?”, The Lancet, Vol. 334, No. 8668, pp. 905-908, 1989.
[3] J. Karrholm, “Roentgen stereophotogrammetry. Review of orthopaedic applications”, Acta Orthopaedica Scandinavica, Vol. 60, No. 4, pp. 491-503, 1989.
[4] J. Karrholm, R. H. S. Gill and E. R. Valstar, “The history and future of radiostereometric analysis”, Clinical Orthopaedics & Related Research, Vol. 448, pp. 10-21, 2006.
[5] G. Selvik, “Roentgen stereophotogrammetry- a method for the study of the kinematics of the skeletal system”, Acta Orthopaedica Scandinavica, Vol. 232, pp. 1-51, 1989.
[6] L. Ryd, B. E. Albrektsson, L. Carlsson, F. Dansgard, P. Herberts, A. Lindstrand, Regner L. and S. Toksvig-Larsen, “Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses”, Journal of Bone and Joint Surgery - British Volume, Vol. 77-B, No. 3, pp. 377-383, 1995.
[7] K. G. Nilsson, J. Karrholm, L. Carlsson, and T. Dalen, “Hydroxyapatite coating versus cemented fixation of the tibial component in total knee arthroplasty: Prospective randomized comparison of hydroxyapatite-coated and cemented tibial components with 5-year follow-up using radiostereometry”, The Journal of Arthroplasty, Vol. 14, No. 1, pp. 9-20, 1999.
146
[8] J. Karrholm, B. Borssen, G. Lowenhielm, and F. Snorrason, “Does early micromotion of femoral stem prostheses matter? 4-7-year stereoradiographic follow-up of 84 cemented prostheses”, Journal of Bone and Joint Surgery - British Volume, Vol. 76-B, No. 6, pp. 912-917, 1994.
[9] J. Karrholm, S. Brandsson and M. A. R. Freeman, “Tibiofemoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA”, Journal of Bone and Joint Surgery - British Volume, Vol. 82-B, No. 8, pp. 1201-1203, 2000.
[10] G. Digas, J. Karrholm, J. Thanner, and P. Herberts, “5-year experience of highly cross-linked polyethylene in cemented and uncemented sockets: Two randomized studies using radiostereometric analysis”, Acta Orthopaedica, Vol. 78, No. 6, pp. 746-754, 2007.
[11] J. Uvehammer, J. Karrholm, and S. Brandsson, “In vivo kinematics of total knee arthroplasty: Concave versus posterior-stabilised tibial joint surface”, Journal of Bone and Joint Surgery - British Volume, Vol. 82-B, No. 4, pp. 499-505, 2000.
[12] J. I. Ragnarsson and J. Karrholm, “Stability of femoral neck fracture: Roentgen stereophotogrammetry of 29 hook-pinned fractures”, Acta Orthopaedica, Vol. 62, No. 3, pp. 201-207, 1991.
[13] G. Hagglund, B. Bylander, L. I. Hansson, J. Karrholm, G. Selvik and K. Svensson, “Longitudinal growth of the distal fibula in children with slipped capital femoral epiphysis”, Journal of Pediatric Orthopaedics, Vol. 6, No. 3, pp. 274-277, 1986.
[14] M. J. Pearcy, “Stereo radiography of lumbar spine motion”, Acta Orthopaedica Scandinavica, Vol. 212, pp. 1-45, 1985.
147
[15] H. A. Vrooman, E. R. Valstar, G. J. Brand, D. R. Admiraal, P. M. Rozing and J. H. C. Reiber, “Fast and accurate automated measurements in digitized stereophotogrammetric radiographs”, Journal of Biomechanics, Vol. 31, No. 5, pp. 491-498, 1998.
[16] E. R. Valstar, H. A. Vrooman, S. Toksvig-Larsen, L. Ryd and R. G. H. H. Nelissen, “Digital automated RSA compared to manually operated RSA”, Journal of Biomechanics, Vol. 33, No. 12, pp. 1593-1599, 2000.
[17] E. R. Valstar, F. W. D. Jong, H. A. Vrooman, P. M. Rozing and J. H. C. Reiber, “Model-based roentgen stereophotogrammetry of orthopaedic implants”, Journal of Biomechanics, Vol. 34, No. 6, pp. 715-722, 2001.
[18] S. A. Banks and W. A. Hodge, “Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy”, IEEE Transactions on Biomedical Engineering, Vol. 43, No. 6, pp. 638-649, 1996.
[19] W. A. Hoff, R. D. Komistek, D. A. Dennis, S. M. Gabriel and S. A. Walker, “Three-dimensional determination of femoral-tibial contact positions under in viva conditions using fluoroscopy”, Clinical Biomechanics, Vol. 13, No. 7, pp. 455-472, 1998.
[20] S. Zuffi, A. Leardini, F. Catani, S. Fantozzi and A. Cappello, “A model-based method for the reconstruction of total knee replacement kinematics”, IEEE Transactions on Medical Imaging, Vol. 18, No. 10, pp. 981-991, 1999.
[21] Y. Fukuoka, A. Hoshino and A. Ishida, “A simple radiographic measurement method for polyethylene wear in total knee arthroplasty”, IEEE Transactions Rehabilitation English, Vol. 7, No. 2, pp. 228-233, 1999.
148
[22] T. Yamazaki, T. Watanabe, Y. Nakajima, K. Sugamoto, T. Tomita, H. Yoshikawa and S. Tamura, “Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy”, IEEE Transactions on Medical Imaging, Vol. 23, No. 5, pp. 602-612, 2004.
[23] B. L. Kaptein, E. R. Valstar, B. C. Stoel, P. M. Rozing and J. H. C. Reiber, “Evaluation of three pose estimation algorithms for model-based roentgen stereophotogrammetric analysis”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 218, No. 4, pp. 231-238, 2004.
[24] G. R. Hanson, J. F. Suggs, A. A. Freiberg, S. Durbhakula and G. Li, “Investigation of in vivo 6DOF total knee arthroplasty kinematics using a dual orthogonal fluoroscopic system”, Journal of Orthopaedic Research, Vol. 24, No. 5, pp. 974-238, 2006.
[25] M. R. Mahfouz, W. A. Hoff, R. D. Komistek and D. A. Dennis, “A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images”, IEEE Transactions on Medical Imaging, Vol. 22, No. 12, pp. 1561-1574, 2003.
[26] M. R. Mahfouz, W. A. Hoff, R. D. Komistek and D. A. Dennis, “A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images”, IEEE Transactions on Medical Imaging, Vol. 22, No. 12, pp. 1561-1574, 2003.
[27] J. Bingham and G. Li, “An optimized image matching method for determining in-vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system”, Journal of Biomechanical Engineering, Vol. 128, No. 4, pp. 588-595, 2006.
149
[28] B. L. Kaptein, E. R. Valstar, B. C. Stoel, P. M. Rozing and J. H. C. Reiber, “A new model-based RSA method validated using CAD models and models from reversed engineering”, Journal of Biomechanics, Vol. 36, No. 6, pp. 873-882, 2003.
[29] E. H. Garling, B. L. Kaptein, R. G. H. H. Nelissen and E. R. Valstar, “Limited rotation of the mobile-bearing in a rotating platform total knee prosthesis”, Journal of Biomechanics, Vol. 40, Supplement 1, pp. S25-S23, 2007.
[30] C. Trozzi, B. L. Kaptein, E. H. Garling, T. Shelyakova, A. Russo, L. Bragonzoni and S. Martelli, “Precision assessment of model-based RSA for a total knee prosthesis in a biplanar set-up”, The Knee, Vol. 15, No. 5, pp. 396-402, 2008.
[31] C. Hurschler, F. Seehaus, D. Sportwiss, J. Emmerich, B. L. Kaptein and H. Windhagen, “Comparison of the model-based and narker-based roentgen stereophotogrammetry methods in a typical clinical setting”, The Journal of Arthroplasty, Vol. 24, No. 4, pp. 594-606, 2009.
[32] F. Seehaus, J. Emmerich, B. L. Kaptein, H. Windhagen and C. Hurschler, “Experimental analysis of model-based roentgen stereophotogrammetric analysis (MBRSA) on four typical prosthesis components”, Journal of Biomechanical Engineering, Vol. 131, No. 4, pp. 041004-1 - 041004-10, 2009.
[33] G. R. Hanson, S. E. Park, J. F. Suggs, A. L. Moynihan, K. W. Nha, A. A. Freiberg, and G. Li, “In vivo kneeling biomechanics after posterior stabilized total knee arthroplasty”, Journal of Orthopaedic Scinece, Vol. 12, No. 5, pp. 467-483, 2007.
[34] G. R. Hanson, S. E. Park, J. F. Suggs, A. L. Moynihan1, K. W. Nha, A. A. Freiberg, and G. Li, “In vivo kneeling biomechanics after
150
posterior stabilized total knee arthroplasty”, Journal of Orthopaedic Scinece, Vol. 12, No. 5, pp. 467-483, 2007.
[35] L. E. DeFrate, K. W. Nha, R. Papannagari, J. M. Moses, T. J. Gill and G. Li, “The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion”, Journal of Biomechanics, Vol. 40, No. 8, pp. 1716-1722, 2007.
[36] G. Li, R. Papannagari, K. W. Nha, L. E. DeFrate, T. J. Gill and H. E. Rubash, “The coupled motion of the femur and patella during in vivo weightbearing knee flexion”, Journal of Biomechanical Engineering, Vol. 129, No. 6, pp. 937-943, 2009.
[37] S. K. Van de Velde, J. T. Bingham, T. J. Gill and G. Li, “Analysis of tibiofemoral cartilage deformation in the posterior cruciate ligament-deficient knee”, The Journal of Bone and Joint Surgery, Vol. 19, No. 1, pp. 167-175, 2009.
[38] A. Hosseini, T. J. Gill and G. Li, “In vivo anterior cruciate ligament elongation in response to axial tibial loads”, Journal of Orthopaedic Scinece, Vol. 14, No. 3, pp. 298-306, 2009.
[39] J. F. Suggs, Y. M. Kwon, S. M. Durbhakula, G. R. Hanson and G. Li, “In vivo flexion and kinematics of the knee after TKA: comparison of a conventional and a high flexion cruciate-retaining TKA design”, Knee Surgery, Sports Traumatology, Arthroscopy, Vol. 17, No. 2, pp. 150-156, 2009.
[40] Q. Xia, S. Wang, P. G. Passias, M. Kozanek, G. Li, B. E. Grottkau, K.B. Wood and G. Li, “I In vivo range of motion of the lumbar spinous processes”, European Spine Journal, Vol. 18, No. 9, pp. 1355-1362, 2009.
151
[41] E. Ingham and J. Fisher, “Measurement of geometric deformation of lumbar intervertebral discs under in-vivo weight bearing condition”, Journal of Biomechanics, Vol. 42, No. 6, pp. 705-711, 2009.
[42] E. Ingham and J. Fisher, “Biological reactions to wear debris in total joint replacement”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 214, No. 1, pp. 21-37, 2000.
[43] A. Short, H. S. Gill, B. Marks, J. C. Waite, C. F. Kellett, A. J. Price, J. J. O’Connor and D. W. Murray, “A novel method for in vivo knee prosthesis wear measurement”, Journal of Biomechanics, Vol. 38, No. 2, pp. 315-322, 2005.
[44] F. Jourdan, “Numerical wear modeling in dynamics and large strains: Application to knee joint”, Wear, Vol. 261, No. 3-4, pp. 283-292, 2006.
[45] J. L. Lanovaz and R. E. Ellis, “Dynamic simulation of a displacement-controlled total knee replacement wear tester”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 222, No. 2, pp. 669-681, 2008.
[46] S. Pal, H. Haider, P. J. Laz, L. A. Knight, P. J. Rullkoetter, “Probabilistic computational modeling of total knee replacement wear”, Wear, Vol. 264, No. 7-8, pp. 701-707, 2008.
[47] R. Willing and I. Y. Kim, “Three dimensional shape optimization of total knee replacements for reduced wear”, Structural and Multidisciplinary Optimization, Vol. 38, No. 4, pp. 405-414, 2009.
[48] R. Willing and I. Y. Kim, “Three dimensional shape optimization of total knee replacements for reduced wear”, Structural and Multidisciplinary Optimization, Vol. 38, No. 4, pp. 405-414, 2009.
152
[49] D. Zhao, B. J. Fregly and W. G. Sawyer, “Dynamic simulation of a simulator machine for knee implant damage prediction”, Proceedings of the IMechE Knee Arthroplasty Technology Conference, pp. 237-240, April, 2005.
[50] S. Affatato, L. Cristofolini, W. Leardini, P. Erani, M. Zavalloni, D. Tigani, and M. Viceconti, “A New Method of In VitroWear Assessment of the UHMWPE Tibial Insert in Total Knee Replacement”, Artificial Organs, Vol. 32, No. 12, pp. 942-948, 2008.
[51] D. Zhao, H. Sakoda, W. G. Sawyer, S. A. Banks and B. J. Fregly, “Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor”, Journal of Biomechanical Engineering, Vol. 130, No. 1, pp. 011004-1 - 011004-10, 2009.
[52] C. J. Lavernia, R. J. Sierra, D. S. Hungerford and K. Krackow, “Activity level and wear in total knee arthroplasty: A study of autopsy retrieved specimens”, The Journal of Arthroplasty, Vol. 16, No. 4, pp. 446-453, 2001.
[53] M. K. Harman, S. A. Banks, B. J. Fregly and W. G. Sawyer, “Biomechanical mechanisms for damage: retrieval analysis and computational wear predictions in total knee replacements”, Journal of Mechanics in Medicine and Biology, Vol. 5, No. 3, pp. 469-475, 2005.
[54] A. Hoshino, Y. Fukuoka and A. Ishida, “Accurate in vivo measurement of polyethylene wear in total knee arthroplasty”, The Journal of Arthroplasty, Vol. 17, No. 4, pp. 490-496, 2002.
153
[55] C. F. Kellett, A. Short, A. Price, H. S. Gill and D. W. Murray, “In vivo measurement of total knee replacement wear”, The Knee, Vol. 11, No. 3, pp. 183-187, 2004.
[56] K. M. Varadarajan, A. L. Moynihan, D. D’Lima, C. W. Colwell and G. Li, “In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities”, Journal of Biomechanics, Vol. 41, No. 10, pp. 2159-2168, 2008.
[57] J. F. Suggs, G. R. Hanson, S. E. Park, A. L. Moynihan and G. Li, “Patient function after a posterior stabilizing total knee arthroplasty: cam-post engagement and knee kinematics”, Knee Surgery, Sports Traumatology, Arthroscopy, Vol. 16, No. 3, pp. 290-296, 2008.
[58] B. J. Fregly, W. G. Sawyer, M. K. Harman and S. A. Banks, “Computational wear prediction of a total knee replacement from in vivo kinematics”, Journal of Biomechanics, Vol. 38, No. 2, pp. 305-314, 2005.
[59] H. S. Gill, J. C. Waite, A. Short, C. F. Kellett, A. J. Price and D. W. Murray, “In vivo measurement of volumetric wear of a total knee replacement”, The knee, Vol. 13, No. 4, pp. 312-317, 2006.
[60] J. A. Seiber, “Flat-panel detectors: how much better are they?”, Pediatric radiology, Vol. 36, No. 2, pp. 173-181, 2006.
[61] S. Hamai, T. Moro-oka, H. Miura, T. Shimoto, H. Higaki, B. J. Fregly, Y. Iwamoto, S. A. Banks, “Knee kinematics in medial osteoarthritis during in vivo weight-bearing activities”, Journal of Orthopaedic Research, Vol. 27, No. 12, pp. 1555-1561, 2009.
[62] M. Sonka, V. Hlavac and R. Boyle, Image processing, analysis, and machine, 2nd edition, Cengage Learning, NY, 2004.
154
[63] M. Garland and P. S. Heckbert, “Surface simplification using quadric error metrics”, SIGGRAPH 97 Conference Proceedings, pp. 209-216, August, 1997.
[64] W. Schroeder, J. Zarge and W. Lorensen, “Decimation of triangle meshes”, Computer Graphics (SIGGRAPH’ 92 Proceedings), Vol. 26, No. 2, pp. 65-70, 1992.
[65] J. Y. Lai and Y. C. Tsai, “A data segmentation technique for triangular meshes in reverse engineering”, Journal of the Chinese Society of Mechanical Engineers, Vol. 28, No. 3, pp. 289-300, 2007.
[66] N. Otsu, “A threshold selection method from gray-level histograms”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979.
[67] N. Otsu, “An efficient method for finding the minimum of a function of several variables without calculating derivates”, The Computer Journal, Vol. 7, No. 2, pp. 155-162, 1964.
[68] S. Hirokawa, A. Hossain, Y. Kihara and S. Ariyoshi, “A 3D kinematic estimation of knee prosthesis using X-ray projection images: clinical assessment of the improved algorithm for fluoroscopy images”, Medical and Biological and Engineering and Computing, Vol. 46, No. 12, pp. 1253-1262, 2008.
[69] B. M. You, P. Siy, W. Anderst and S. Tashman, “In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: Application to knee kinematics”, IEEE Transactions on Medical Imaging, Vol. 20, No. 6, pp. 514-525, 2001.