| 研究生: |
陳嘉彥 Chia-Yen Chen |
|---|---|
| 論文名稱: |
平台式三累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體陣列之設計 Design of Mesa-type InGaAs/InAlAs Single-Photon Avalanche Diodes Array with Triple Multiplication Layers |
| 指導教授: |
李依珊
Yi-Shan Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 單光子崩潰二極體陣列 |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,因為從遠距感測、三維成像到金融與資訊安全的需求不斷擴大下,有許多研究致力於高靈敏度光偵測器的開發,單光子崩潰二極體因其增益無窮大的特性,可偵測單光子等級,遂成為了光達、光量子通訊與光量子電腦應用中最有潛力的後端偵測器。以三五族化合物半導體製成的單光子崩潰二極體可感測近紅外光纖通訊波段,在光達應用中可確保人眼安全,亦提升偵測距離;再者,若能利用單光子崩潰二極體進一步演示光子數目解析,定能促進光量子科學之應用與發展。
本文致力於單一單光子崩潰二極體元件至陣列之開發,因此我們在元件設計上針對累增層做特殊設計,使得累增層內電場呈三層階梯分佈,旨在降低穿隧效應、提升時間表現並降低缺陷所致後脈衝效應。我們製作了4X4平台式單光子雪崩偵測器陣列,相較於平面式的結構而言製作上較為簡單,且元件的均勻性較高。此外,針對陣列內所有元件的電性探討製程良率與均勻性,結果可得到高度均勻的崩潰電壓"43.1±0.1 V" 及崩潰電流"20.8±3.7 nA" ,將我們的元件與文獻相比,暗計數至多降低約一個數量級。此外,在溫度250 K下,元件的單光子偵測效率為50 %,而串音機率則為8.43 %。未來期望可藉由陣列的高均勻性,擴大陣列內中像素的數量,提高光偵測效率,並與輸出積體電路整合,來實現光達的應用並且以空間復用的方法實現光子數目解析。
Recently, since the application needs from remote sensing, three-dimensional imaging to information and financial security grows rapidly, the development of highly sensitive detectors receives much research interest. Among those detectors, single-photon avalanche diodes (SPAD) capable of detecting single photon due to their infinite gain become the most potential receivers for the applications of light detection and ranging (LiDAR), photonic quantum communication and quantum computing. The SPAD based on III-V compound semiconductors that can detect near infrared light including the fiber communication bands can be found their applications in LiDAR with eye-safety and improved ranging distance. Furthermore, the sensor exhibiting photon number resolving capability can also facilitate the application and development of photonic quantum science.
This work aims to develop a high performance SPAD and finally carry out a focal plane array. We bring a novel structure design to the SPAD by introducing a three stepwise electric field distribution to the multiplication layer, which helps to reduce the tunneling effect, improve timing characteristics and reduce the afterpulsing effect induced by the defects. As compared with planar-type, mesa-type is simpler to fabricate and has higher uniformity. Thus, We have fabricated a 4X4 mesa-type SPAD array and studied the yield and uniformity of each SPAD pixels. The results show that our SPAD has high uniformity from pixel to pixel, whose breakdown voltage and breakdown current is respectively 43.1± 0.1 V and20.8± 3.7 nA. As compared with the literature, the dark count rate is reduced by at most one order of magnitude. At the temperature of 250 K, the SPDE of 50% and the crosstalk probability of 8.43 % are obtained. In the future, enlarging the pixel cluster is envisioned due to the high pixel uniformity in the array, which could elevate the single photon detection efficiency. After integrating with a read-out IC, a hybrid SPAD image sensor can be used for the application of LiDAR and is possible to further perform photon number resolving by the spatial multiplexing scheme.
[1] Hamamatsu Photonics (1998). Photomultiplier Tubes: construction and operating characteristics and connections to external circuits. Hamamatsu Photonics, K.K.
[2] M. Vollmer, K. Möllmann, and J. A. Shaw, "The optics and physics of near infrared imaging," in ETOP 2015 Proceedings, E. Cormier and L. Sarger, eds., (Optica Publishing Group, 2015), paper TPE09.
[3] Sahba Jahromi and Juha Kostamovaara, "Timing and probability of crosstalk in a dense CMOS SPAD array in pulsed TOF applications," Opt. Express 26, 20622-20632 (2018), doi: 10.1364/OE.26.020622.
[4] Gur Lubin, Ron Tenne, Ivan Michel Antolovic, Edoardo Charbon, Claudio Bruschini, and Dan Oron, "Quantum correlation measurement with single photon avalanche diode arrays," Opt. Express 27, 32863-32882 (2019), doi: 10.1364/OE.27.032863.
[5] Ivan Rech, Antonino Ingargiola, Roberto Spinelli, Ivan Labanca, Stefano Marangoni, Massimo Ghioni, and Sergio Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model," Opt. Express 16, 8381-8394 (2008), doi: 10.1364/OE.16.008381.
[6] X. Meng, C. H. Tan, S. Dimler, J. P. R. David, and J. S. Ng, ‘‘1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature,’’ Opt. Exp., vol. 22, pp. 22608–22615, Sep. 2014, doi: 10.1364/OE.22.022608.
[7] Jishen Zhang, Haibo Wang, Gong Zhang, Kian Hua Tan, Satrio Wicaksono, Haiwen Xu, Chao Wang, Yue Chen, Yan Liang, Charles Ci Wen Lim, Soon-Fatt Yoon, and Xiao Gong, "High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection," Opt. Lett. 46, 2670-2673 (2021), doi: 10.1364/ OL.424606.
[8] Yi-Shan Lee, Yan-Min Liao, Ping-Li Wu, Chi-En Chen, Yu-Jie Teng, Yu-Ying Hung, and Jin-Wei Shi, "In0.52Al0.48As Based Single Photon Avalanche Diodes with Stepped E-Field in Multiplication Layers and High Efficiency Beyond 60%," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2, pp. 1-7, March-April 2022, Art no. 3802107, doi: 10.1109/ JSTQE.2021.3114130.
[9] Meng X, Xie S, Zhou X, Calandri N, Sanzaro M, low nis A, Tan CH, Ng JS. InGaAs/InAlAs single photon avalanche diode for 1550 nm photons. R Soc Open Sci. 2016 Mar 16;3(3):150584. doi: 10.1098/rsos.150584.
[10] C. Zhang, S. Lindner, I. M. Antolović, J. Mata Pavia, M. Wolf and E. Charbon, "A 30-frames/s, 252×144 SPAD Flash LiDAR with 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming," in IEEE Journal of Solid-State Circuits, vol. 54, no. 4, pp. 1137-1151, April 2019, doi: 10.1109/JSSC.2018.2883720.
[11] Takashi Baba, Yoshihito Suzuki, Kenji Makino, Takuya Fujita, Tatsuya Hashi, Shunsuke Adachi, Shigeyuki Nakamura, and Koei Yamamoto, "Development of an InGaAs SPAD 2D array for flash LIDAR," Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV, 105400L (26 January 2018), doi: 10.1117/12.2289270.
[12] Jinhou Lin, Ying Sun, Wen Wu, Kun Huang, Yan Liang, Ming Yan, and Heping Zeng, "High-speed photon-number-resolving detection via a GHz-gated SiPM," Opt. Express 30, 7501-7510 (2022), doi: 10.1364 /OE.451548.
[13] Xiuliang Chen, E Wu, Lilin Xu, Yan Liang, Guang Wua), and Heping Zeng"Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,"Appl. Phys. Lett. 95, 131118 (2009), doi: 10.1063/1.3242380.
[14] Yi Jian, E Wu, Xiuliang Chen, Guang Wu, and Heping Zeng, "Time-dependent photon number discrimination of InGaAs/InP avalanche photodiode single-photon detector," Appl. Opt. 50, 61-65 (2011), doi: 10.1364/AO.50.000061.
[15] H. Guo, Y. Yang, F. Zhang and Z. Wen, "Design and fabrication of 4H-SiC Sam-APD ultraviolet photodetector," 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), 2017, pp. 232-235, doi: 10.1109/IFWS.2017.8246019.
[16] S. Okhonin, M. Gureev, D. Sallin, J. Appel, A. Koukab, A. Kvasov, M. Pastre, E. S. Polzik, A. K. Tagantsev, F. Uddegard, and M. Kayal, "A dynamic operation of a PIN photodiode,"Appl. Phys. Lett. 106, 031115 (2015), doi: 10.1063/1.4906488.
[17] Pearsall, T.P.; Pollack, M.A. Tsang, W. T. "Photodiodes for Optical Fiber Communication. " SEMICONDUCTORS AND SEMIMETALS. Vol. 17. Academic Press. pp. 174–246. ISBN 978-0-08-086417-4.
[18] Lionel Juen Jin Tan, Daniel Swee Guan Ong, Jo Shien Ng, Chee Hing Tan, Stephen K. Jones, Yahong Qian, and John Paul Raj David "Temperature Dependence of Avalanche Breakdown in InP and InAlAs," in IEEE Journal of Quantum Electronics, vol. 46, no. 8, pp. 1153-1157, Aug. 2010, doi: 10.1109/JQE.2010.2044370.
[19] Elisabetta Nocerino, "The Semiconductor Multiplication System for Photoelectrons in a Vacuum Silicon Photomultiplier Tube and Related FrontEnd Electronics," University of Naples Federico II, 2015
[20] Jun Zhang, Mark A Itzler, Hugo Zbinden, and Jian-Wei Pan, "Advances in InGaAs/InP single-photon detector systems for quantum communication, " Light Sci Appl 4, e286 (2015). doi.org/10.1038/lsa. 2015.59
[21] Hui Wang, Xiaohong Yang, Rui Wang, Tingting He, and Kaibao Liu, "Low dark current and high gain-bandwidth product of avalanche photodiodes: optimization and realization," Opt. Express 28, 16211-16229 (2020), doi: 10.1364/OE.393063.
[22] Ning Duan, Shuling Wang, Feng Ma, Ning Li, J.C. Campbell, Chad Wang, and L.A. Coldren,"High-speed and low-noise SACM avalanche photodiodes with an impact-ionization-engineered multiplication region," in IEEE Photonics Technology Letters, vol. 17, no. 8, pp. 1719-1721, Aug. 2005, doi: 10.1109/LPT.2005.851903.
[23] F. Acerbi, M. Anti, A. Tosi and F. Zappa, "Design Criteria for InGaAs/InP Single-Photon Avalanche Diode," in IEEE Photonics Journal, vol. 5, no. 2, pp. 6800209-6800209, April 2013, Art no. 6800209, doi: 10.1109/JPHOT.2013.2258664.
[24] H.S. Kim, J.H. Choi, H.M. Bang, Y. Jee, S.W. Yun, J. Burm, M.D. Kim and A.G. Choo. "Dark current reduction in APD with BCB passivation." ELECTRONICS LETTERS 29th Vol. 37 No. 7, March 2001, doi: 10.1049/el:20010318
[25] Chen Liu, Hai-Feng Ye and Yan-Li Shi. "Advances in near-infrared avalanche diode single-photon detectors. "Chip,Volume 1, Issue 1, March 2022, doi.org/10.1016/j.chip.2022.100005.
[26] S. You, J. Cheng and Y. -H. Lo, "Physics of Single Photon Avalanche Detectors with Built-In Self-Quenching and Self-Recovering Capabilities," in IEEE Journal of Quantum Electronics, vol. 48, no. 7, pp. 960-967, July 2012, doi: 10.1109/JQE.2012.2196679.
[27] X. Jiang, M. A. Itzler, K. O'Donnell, M. Entwistle and K. Slomkowski, "InGaAs/InP single photon avalanche diodes with negative feedback," in IEEE Photonics Conference 2012, 2012, pp. 92-93, doi: 10.1109 /IPCon.2012.6358504.
[28] M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi and H. Matsuzaki, "Triple-mesa Avalanche Photodiode with Inverted P-Down Structure for Reliability and Stability," in Journal of Lightwave Technology, vol. 32, no. 8, pp. 1543-1548, April15, 2014, doi: 10.1109/JLT.2014.2308512.
[29] Y. Zhao, "Impact Ionization in Absorption, Grading, Charge, and Multiplication Layers of InP/InGaAs SAGCM APDs With a Thick Charge Layer," in IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3493-3499, Oct. 2013, doi: 10.1109/TED.2013.2279299.
[30] Yuan Yuan, Yabo Li, Joshua Abell, JiYuan Zheng, Keye Sun, Christopher Pinzone, and Joe C. Campbell, "Triple-mesa avalanche photodiodes with very low surface dark current," Opt. Express 27, 22923-22929 (2019)
[31] B. Li, Q. -Q. Lv, R. Cui, W. -H. Yin, X. -H. Yang and Q. Han, "A Low Dark Current Mesa-Type InGaAs/InAlAs Avalanche Photodiode," in IEEE Photonics Technology Letters, vol. 27, no. 1, pp. 34-37, 1 Jan.1, 2015, doi: 10.1109/LPT.2014.2361202.
[32] Peter Vines, Kateryna Kuzmenko, Jarosław Kirdoda, Derek C. S. Dumas, Muhammad M. Mirza, Ross W. Millar, Douglas J. Paul, and Gerald S. Buller, "High performance planar germanium-on-silicon single-photon avalanche diode detectors," Nat Commun 10, 1086 (2019). doi:10.1038/ s41467-019-08830-w.
[33] D Sheela and Nandita DasGupta, "Optimization of surface passivation for InGaAs/InP pin photodetectors using ammonium sulfide," 2008 Semicond. Sci. Technol. 23 035018, doi:10.1088/0268 1242/23/3/035018.
[34] J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler and X. Jiang, "Common-Mode Cancellation in Sinusoidal Gating with Balanced InGaAs/InP Single Photon Avalanche Diodes," in IEEE Journal of Quantum Electronics, vol. 48, no. 12, pp. 1505-1511, Dec. 2012, doi: 10.1109/JQE.2012.2223200.
[35] Brian Piccione, Xudong Jiang, and Mark A. Itzler, "Spatial modeling of optical crosstalk in InGaAsP Geiger-mode APD focal plane arrays," Opt. Express 24, 10635-10648 (2016), doi: 10.1364/OE.24.010635
[36] Y. -S. Lee, Naseem, P. -L. Wu, Y. -J. Chen and J. -W. Shi, "Neat Temporal Performance of InGaAs/InAlAs Single Photon Avalanche Diode With Stepwise Electric Field in Multiplication Layers," in IEEE Access, vol. 9, pp. 32979-32985, 2021, doi: 10.1109/ACCESS.2021.3060824.
[37] A. Tosi, N. Calandri, M. Sanzaro and F. Acerbi, "Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, pp. 192-197, 1 Nov.-Dec. 2014, Art no. 3803406, doi: 10.1109/JSTQE. 2014.2328440.
[38] F. Signorelli et al., "Low-Noise InGaAs/InP Single-Photon Avalanche Diodes for Fiber-Based and Free-Space Applications," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2: Optical Detectors, pp. 1-10, March-April 2022, Art no. 3801310, doi: 10.1109/JSTQE. 2021.3104962.