跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李則辰
tse-chen lee
論文名稱: 正斷層錯動對地層應力以及微觀組構變化之影響初探
指導教授: 黃文昭
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 122
中文關鍵詞: 正斷層離散元素法應力場剪裂帶應力路徑微觀結構
外文關鍵詞: normal fault, discrete element method, shear band, fault offsets, Stress field, microstructure
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在探討正斷層剪裂帶附近到一定範圍內所造成的地表破壞行為及其底下的土壤力學機制。台灣位於板塊交界處上,因此地震的發生頻率很高,而且台灣地狹人稠,正斷層剪裂帶附近,可以觀察到許多因斷層錯動引致土層變形,但地表下的力學行為變化無法用肉眼看出。為了瞭解地表下的土層的應力場情形,我們利用了離散元素法來研究探討地表底下的應力變化,以後在近斷層區域土地利用上可以當作參考的準則。
    本研究使用了PFC2D來進行模擬,因為PFC (Particle flow code) 是以顆粒流來進行模擬,在力學行為上更能接近試驗砂箱狀況,在正斷層剪裂帶的上下方佈下觀測圓來探討斷層錯動時剪裂帶附近土壤的力學行為以及微觀結構變化。
    其結果指出,對於錯動期間的孔隙率變化,可以看出在下盤中,大多數孔隙率值沒有改變。對於剪裂帶附近的區域,在上盤區域(土層較淺的位置)中,孔隙率顯著增加。在靠近剪裂帶的底部區域(土層更深的位置),孔隙率略有增加。
    對於應力路徑與旋轉角的變化,在斷層剛開始錯動時,其應力路徑皆先側向壓縮接著再側向解壓回到初始值附近,變化值都在20kPa以內,而旋轉角變化皆在正負5°以內,代表遠離剪裂帶的應力變化值不大。但在剪裂帶附近兩旁區域的應力路徑,在剛錯動時是先軸向壓縮之後再軸向解壓,尤其是剪裂帶上方的區域,其應力路徑發展較為複雜。


    This study is to investigate the surface failure behavior and the underlying soil mechanics mechanism in the vicinity of normal fault. Near the fault can be observed in the vicinity of the fault caused by a large number of soil deformation, but the mechanical changes under the surface can not be seen with the naked eye
    In this study, PFC2D was used to simulate, because PFC (Particle flow code) was simulated by particle flow, and the mechanical behavior was more close to the experimental sandbox. The measure circle was discussed in the upper and lower sides of the normal fault Mechanical Behavior and Microstructure Variation of Soil Near the Shear Zone in Faults.
    For the change in porosity during dislocation, it can be seen that most porosity values did not change in the lower panel. For areas near the shear zone, the porosity increases significantly in the upper plate area (shallow soil location). The porosity increases slightly in the bottom area near the shear zone (deeper in the soil).
    For the change of the stress path and the rotation angle, the stress path is compressed in the lateral direction and then decompressed in the vicinity of the initial value. The change value is within 20 kPa and the rotation angle changes in the positive and negative 5 ° or less, on behalf of away from the shear zone of the stress change is not significant. However, the stress path in the vicinity of the crack zone is axially decompressed after axial compression, especially in the area above the shear zone, and its stress path is more complicated.

    摘要 vi ABSTRACT vii 目錄 viii 圖目錄 xi 表目錄 xvi 第一章 緒論 1 1.1研究動機及目的 1 1.2研究內容 1 第二章 文獻回顧 3 2.1斷層 3 2.1.1 地表變形 5 2.1.2 正斷層破壞 10 2.1.2 剪裂帶應力變化行為 12 2.2離散元素法 14 2.2.1 PFC2D模擬概述 16 2.2.2二維模擬的限制 17 2.2.4 顆粒質量的計算方式 17 2.3觀測圓原理 17 2.3.1 孔隙率計算 19 2.3.2應力與應變概述 20 2.4 應力路徑 22 2.5主應力作用面旋轉角 25 第三章 研究方法 27 3.1參數決定 27 3.2 模型建立 31 3.3觀測圓設置 34 3.4模型驗證 36 3.4.1垂直應力驗證 36 3.4.2 地表位移驗證 37 第四章 正斷層錯動模擬結果 47 4.1地底下孔隙率變化 47 4.2 地底下水平應力情況 51 4.3地底下垂直應力情況 54 4.3剪應力 58 4.3 應力路徑與旋轉角 60 第五章 結論與未來展望 72 5.1結論 72 5.2建議與未來展望 74 參考文獻 75 附錄1Q&A 77 附錄2觀測圓不同半徑比較 80 附錄3試體另外加入兩組觀測圓 82 附錄4試體內加入維生管線箱涵 87 附錄5 code 90

    1. 林郁鈞,「以離散元素法進行具鍵結顆粒材料之直剪試驗模擬」,國立中央大學土木工程研究所論文,桃園 (2014)。
    2. 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程所,桃園(2013)。
    3. 宋丘言,「使用離散元素法進行乾砂直剪試驗模擬」,國立中央大學土木工程研究所碩士論文,桃園 (2012)。
    4. 紀宗吉、邱禎龍、李元希、劉桓吉 (2000),「車籠埔地震斷層沿線地表變形致災案例探討」,經濟部中央地質特刊,第12號,第235-254頁。
    5. Anastasopoulos, I., G. Gazetas, M. Bransby, M. Davies and A. El Nahas., “Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments,”Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 8, pp.943-958 (2007).
    6. Cundall, P. A. and Strack. O. D. L., “A discrete numerical model for granular assemblies,”Géotechnique, Vol. 29, pp. 47-65 (1979).
    7. El Nahas, A., Bransby, M. F., and Davies, M. C. R., “Centrifuge modeling of the interaction between normal fault rupture and rigid,strong raft foundations,” Physical Modeling in Geotechnics, Hong Kong, pp. 337-342 (2006).
    8. Huang, W.-J. and A. M. Johnson., “Quantitative description and analysis of earthquake-induced deformation zones along strike-slip and dip-slip faults,”Journal of Geophysical Research: Solid Earth, Vol. 115, No.B3, pp. 1-21 (2010).
    9. Itasca Consulting Group Inc., PFC2D, Version4.0 Manual, Minneapolis, MN: ICG (2008).
    10. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice Hall, pp.35-37 (1996).
    11. Lambe, T. W., “The stress-path method, ”Journal of Soil Mechanics and Foundation Engineering, ASCE, Vol. 93, pp. 309-331 (1967).
    12. Oettle, N. and Bray, J., “Fault Rupture Propagation through Previously Ruptured Soil,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 5, pp. 1637-1647 (2013).
    13. Wang, J., and Gutierrez, M., “Discrete element simulations of direct shear specimen scale effects,” Geotechnique, Vol. 60(5), pp 395-409 (2010).
    14. Anaatasopoulos, I., Kourkoulis, R., Gazetas, G., & Tsatsis, A., “Interaction of piled foundation with a rupturing normal fault.” Géotechnique, ICE, Vol. 63, Issue 12, pp. 1042-1059 (2013).

    QR CODE
    :::