| 研究生: |
周信宏 Sin-hong Chou |
|---|---|
| 論文名稱: |
利用氮化矽作為穿隧接面之鍺量子點單電洞電晶體之製作與特性分析 Fabrication and electrical characterization of Germanium QD Single Hole Transistor with Si3N4 tunnel junction |
| 指導教授: |
李佩雯
Pei-wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 利用氮化矽作為穿隧接面之鍺量子點單電洞電晶體 |
| 外文關鍵詞: | Ge QD SHT with Si3N4 tunnel junction |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文所研究之單電洞電晶體,以FinFET技術為構想,利用二氧化矽作為奈米溝渠之側壁,不僅可以微縮奈米溝渠的寬度,而且利用氮化矽作為單電洞電晶體的穿隧位障。當奈米溝渠中的矽鍺經氧化在中心形成單一顆鍺量子點時,可以製作出具有對稱穿隧位障之鍺量子點單電洞電晶體。此元件在室溫下展現明顯的庫倫階梯與庫倫振盪的單電子特性。
This thesis studies the fabrication and tunneling spectroscopy of Ge QD single hole transistors (SHTs) realized in FinFET technology. The Ge QD is generated by oxidizing a SiGe nanocavity, which is separated from the adjacent electrodes by Si3N4 spacers. Thermally oxidizing SiGe in the nanotrench produces single Ge QD in the center with symmetrical tunneling junctions of Ge QD SHTs. Such devices exhibit clear Coulomb oscillation and staircase in room temperature.
【1】陳啟東,「單電子電晶體簡介」,物理雙月刊,第二十六卷,第三期,438-490頁,2004年6月.
【2】M. Saitoh, H. Harata and T. Hiramoto, “Room-temperature demonstration of integrated silicon single-electron transistor circuit for current switching and analog pattern matching,” IEDM Tech. Dig. 2004, p. 187.
【3】G. L. Chen et al., “Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes,” Nanotechnology, vol. 18, p. 475402, 2007.
【4】Kuan-Hung Chen,Chung-Yen Chien and Pei-Wen Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, vol. 21, p. 055302, 2010.
【5】L. Zhuang, L. Guo and S. Y. Chou, “Silicon single-electron quantum-dot transistor switch operating at room-temperature,” Appl. Phys. Lett., vol. 72, p. 1205, 1998.
【6】B. H. Choi et al., “Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor,” Appl. Phys. Lett., vol. 73, p. 3129, 1998.
【7】H. Ishikuro and T. Hiramoto, “Quantum mechanical effects in the silicon quantum dot in a single-electron transistor,” Appl. Phys. Lett., vol. 71, p. 3691, 1997.
【8】Y. Ono et al., “Fabrication method for IC-oriented Si twin-islanld single-electron transistors,” in IEDM Tech Dig. 1998, p. 147.
【9】P. W. Li et al., ”Fabrication of a germanium quantum-dot single-electron transistor with large coulomb-blockade oscillations at room-temperature,” Appl. Phys. Lett., vol. 85, p. 1532, 2004.
【10】D. Hisamoto et al., “FinFET – a Self-aligned double-gate MOSFET scalable to 20 nm”, IEEE Trans. Electron Device, vol. 47, p. 2320, 2000.
【11】K.C. Lu et al., “Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si,” Appl. Phys. Lett., vol. 90,p. 253111, 2007.
【12】P. W. Li et al., “Study of tunneling currents through germanium quantum-dot single-hole and -electron transistors,” Appl. Phys. Lett., vol. 88, p. 213117, 2006.
【13】Michael Quirk,Julian Serda,“ Semiconductor Manufacturing Technology” ,Chapter 6.
【14】Wei-Ting Lai, David M.T. Kou, Pei-Wen Li, ”Transient current through a single germanium quantum dot at room temperature,” Appl. Phys. Lett, to be published.